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Zero Sum Games

An n ×m matrix P = (pij), where pij ∈ R for all i , j , represents a two
player, finite, zero-sum game: player one chooses a row i , player two a
column j , and the entry pij of the matrix P so determined is the amount
the second player pays to the first one. 4 3 1

7 5 8
8 2 0


 0 1 −1
−1 0 1
1 −1 0
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Zero Sum Games

 4 3 1
7 5 8
8 2 0

 ,

 0 1 −1
−1 0 1
1 −1 0


Suppose there exist a value v , row ı̄ and column ̄ such that p̄ıj ≥ v for all
j and pi ̄ ≤ v for all i : the first player is able to guarantee himself at least
v , the second player can guarantee to pay no more than v . In particular
(from the first inequality) p̄ı̄ ≥ v and (from the second inequality) p̄ı̄ ≤ v :
p̄ı̄ = v is the rational outcome of the game, with (̄ı, ̄) a pair of optimal
strategies for the players.

From the second example: Need of mixed strategies.
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Zero Sum Games

Theorem (von Neumann)

A two player, finite, zero sum game as described by a payoff matrix
P has equilibrium in mixed strategies.
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Finding optimal strategies

The first player must choose Sn 3 α = (α1, . . . , αn):

α1p1j + · · ·+ αnpnj ≥ v , 1 ≤ j ≤ m,

v as large as possible.
Suppose (wlog) pij > 0, thus v > 0.
With the change of variable xi = αi

v :∑m
i=1 αi = 1 becomes

∑m
i=1 xi = 1

v :
maximizing v is equivalent to minimizing

∑m
i=1 xi .

The first player problem:{
inf 〈1n, x〉 such that
x ≥ 0,PT x ≥ 1m

.

Second player

{
sup 〈1m, y〉 such that
y ≥ 0,Py ≤ 1n

.
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Finite General Games

A bimatrix (A,B) = (aij , bij), i = 1, . . . , n, j = 1, . . . ,m is a finite game in
strategic form (aij , bij utilities of the players). (In the zero sum case

bij = −aij). Let I = {1, . . . , n}, J = {1, . . . ,m} and X = I × J. Let ∆k

denote the standard simplex in Rk . A Nash equilibrium is a pair (p̄, q̄),
(p̄ ∈ ∆n), (q̄ ∈ ∆m) such that

∑
i ,j

p̄i q̄jaij ≥
∑
i ,j

pi q̄jaij∑
i ,j

p̄i q̄jbij ≥
∑
i ,j

p̄iqjbij

for all p ∈ ∆n, q ∈ ∆m. If both p, q are extreme points of the simplexes:
pure Nash equilibria, if inequalities are strict for p 6= p̄ and q 6= q̄: strict
Nash equilibria.
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Finding Nash Equilibria

Notation: f (p, q) =
∑

i ,j piqjaij .

BR1 : Y → X : BR1(y) = Max {f (·, y)}

BR2 : X → Y : BR2(x) = Max {g(x , ·)},

BR : X × Y → X × Y : BR(x , y) = (BR1(y),BR2(x)).

A Nash equilibrium for a game is a fixed point for BR (Best Reaction).
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Correlated Equilibria

A correlated equilibrium is a probability distribution p = (pij) on X such
that, for all ı̄ ∈ I ,

m∑
j=1

p̄ıj āıj ≥
m∑
j=1

p̄ıjaij ∀i ∈ I ,

and such that, for all j̄ ∈ J

n∑
i=1

pi ̄bi ̄ ≥
n∑

i=1

pi ̄bij ∀j ∈ J.
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Example 1

Example

(
(6, 6) (2, 7)
(7, 2) (0, 0)

)
.

Nash outcomes: (2, 7), (7, 2) (pure), also a mixed providing 14
3 to both.(

1
3

1
3

1
3 0

)
.

is a “nice” correlated equilibrium.

R. Lucchetti (Politecnico di Milano) Lower Semicontinuity of the Solution Set Mapping in Some Optimization Problems9 / 22



Example 2

Example

(
(5, 5) (0, 5)
(5, 0) (1, 1)

)
.

(5, 5) is a “fragile” (yet interesting) Nash equilibrium.
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Aim of the paper(s)

1 to generalize former results of lower stability in linear inequality
systems in two ways:

by allowing also restricted perturbations
by restricting the solution map to its effective domain

2 to apply the machinery to equilibria in games
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Some notation

Linear inequality systems in Rn, with arbitrary index set T , i.e. systems of
the form

σ = {a′tx ≤ bt , t ∈ T},

a : T → Rn, b : T → R.
We shall identify σ with the data (a, b), so that the parametric space is
Θ = (Rn+1)T .
The solution set mapping (or feasible set mapping) is F : Θ ⇒ Rn such
that F (σ) = {x ∈ Rn : a′tx ≤ bt , t ∈ T}, with domain
dom F = {σ ∈ Θ : F (σ) 6= ∅} .
Solution set mapping relative to its domain the restriction of F to domF ,
denoted by FR .
When one parameter is fixed we write a subscript, so when a is fixed Fa,
Θa, when b is fixed Fb, Θb.
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Definitions

Definition

x̂ is a Slater point for σ if

a′t x̂ < bt , ∀t ∈ T ;

x̂ is a strong Slater point (SS) for σ if there exists ρ > 0 such that

a′t x̂ + ρ ≤ bt , ∀t ∈ T .

σ satisfies the (strong) Slater condition if there is a (strong) Slater point
for σ

Definition

A consistent system σ is continuous whenever T is a compact Hausdorff
topological space and a : T → Rn and b : T → R are continuous.
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Main Reference Theorem

Theorem

The following are equivalent:

1 σ has a strong Slater point

2 F is lower semicontinuous at σ

3 σ ∈ intdomF
4 F is dimensionally stable at σ.
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First Results: topological structure of the domains of F ,
Fa, Fb

Proposition

dom F is neither open nor closed

Fa, Fb can be open, closed, or both

Complete characterizations in the second case:
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Topological Properties

Perturbing the RHS

Proposition

The following statements hold true:

domFa = Θa if and only if T is finite and 0n /∈ conv {at , t ∈ T}
dom Fa is open in Θa if and only if 0n /∈ clconv {at , t ∈ T}
If T is finite, then domFa is closed in Θa for any a ∈ (Rn)T .

Perturbing the LHS

Proposition

The following statements hold true:

domFb = Θb if and only if bt ≥ 0 for all t ∈ T

domFb is an open proper subset of Θb if and only if supt∈T bt < 0

domFb is closed in Θb if and only if bt ≥ 0 for all t ∈ T .
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Perturbing All data

Proposition

Given σ ∈ domF , the following statements are true:
(i) If either σ satisfies SSC or F (σ) is a singleton set, then FR is lsc at σ.
(ii) If FR is lsc at σ and F (σ) is not a singleton set, then σ satisfies SSC.

Proposition

Let σ ∈ domF be a continuous system without trivial inequalities. TFAE:

FR is dimensionally stable at σ

the SSC holds

dimF (σ) = n.

Whence FR is lsc at σ if and only if dimF (σ) ∈ {0, n} .
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Perturbing the RHS

Proposition

Let σ = {a′tx ≤ bt , t ∈ T} ∈ domFa. If either
0n+1 /∈ clconv {(at , bt) , t ∈ T\T0} or F (σ) is a singleton set, then FR

a is
lsc at σ.

Proposition

Let σ ∈ domFa be a continuous system without trivial inequalities. TFAE:

FR
a is dimensionally stable at σ

SSC holds

dimF (σ) = n.

As a result, if dimF (σ) ∈ {0, n} , then FR
a is lsc at σ.

Proposition

If T is finite, then FR
a is lsc at any σ ∈ domFa.
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Perturbing the LHS

Proposition

Let σ ∈ domFb be a continuous system without trivial inequalities such
that 0n /∈ F(σ). TFAE:

FR
b is dimensionally stable at σ

the SSC holds

dimF(σ) = n.

Moreover, any of these properties implies that FR
b is lsc at σ.

Proposition

Assume that T is finite and that σ contains no trivial inequality. Then FR
b

is lsc at σ ∈ domF if and only if one of the following alternatives holds:

dim F(σ) = n

dim F(σ) = 0

F(σ) is a non-singleton set contained in some open ray.
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Correlated Equilibria:the Two by Two Case

Proposition (the two by two case)

In a two by two bimatrix game the following happens:

If there are no dominated strategies, then all correlated equilibria are
lower stable

in presence of dominated strategies, only pure strict Nash equilibria
are lower stable
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Correlated Equilibria:the Zero Sum Case

Proposition

A correlated equilibrium of a zero-sum game is stable within the space of
zero-sum games if and only if it is the unique correlated equilibrium of the
game.
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Lower semicontinuity of the solution set mapping of linear systems
relative to their domains, 2011 work in progress

R.L., Y. Viossat
Stable correlated equilibria: the zero-sum case, unpublished note

M.A. Goberna, M.A. López
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