The Nucleolus

Roberto Lucchetti

Politecnico di Milano

Summary of the slides

(1) The excess
(2) The lexicographic order
(3) The Nucleolus
((The nucleolus and the core

Excess

A TU game v is given

Definition

The excess of a coalition A over the imputation x is

$$
e(A, x)=v(A)-\sum_{i \in A} x_{i}
$$

$e(A, x)$ is a measure of the dissatisfaction of the coalition A with respect to the assignment of the imputation x

Remark

An imputation x of the game v belongs to $C(v)$ if and only if $e(A, x) \leq 0$ for all A

Definition

The lexicographic vector attached to the imputation x is the $\left(2^{n}-1\right)-t h$ dimensional vector $\theta(x)$ such that
(1) $\theta_{i}(x)=e(A, x)$, for some $A \subseteq N$
(2) $\theta_{1}(x) \geq \theta_{2}(x) \geq \cdots \geq \theta_{2^{n}-1}(x)$

Definition

The nucleolus solution is the solution $\nu: \mathcal{G}(N) \rightarrow \mathbb{R}^{n}$ such that $\nu(v)$ is the set of the imputations x such that $\theta(x) \leq_{L} \theta(y)$, for all y imputations of the game v

Remark

$x \leq_{L} y$ if either $x=y$ or there exists $j \geq 1$ such that $x_{i}=y_{i}$ for all $i<j$, and $x_{j}<y_{j} . \leq_{L}$ defines a total order in any Euclidean space

An example

Example

Three players, $v(A)=1$ if $|A| \geq 2,0$ otherwise.
Suppose $x=(a, b, 1-a-b)$, with $a, b \geq 0$ and $a+b \leq 1$. The coalitions S complaining ($e(S, \emptyset)>0$) are those with two members.

$$
e(\{1,2\})=1-(a+b), e(\{1,3\})=b, e(\{2,3\})=a
$$

We must minimize

$$
\max \{1-a-b, b, a\}
$$

$\nu=(1 / 3,1 / 3,1 / 3)$

Remember $C(v)=\emptyset$

Nucleolus: one point solution

Theorem

For every TU game v with nonmepty imputation set, the nucleolus $\nu(v)$ is a singleton

Thus the nucleolus is a one point solution

Nucleolus in the core

Proposition

Suppose v is such that $C(v) \neq \emptyset$. Then $\nu(v) \in C(v)$

Proof Take $x \in C(v)$. Then $\theta_{1}(x) \leq 0$. Thus $\theta_{1}(\nu)(v) \leq 0$. Then $\nu(v) \in C(v)$

Another example

$$
\begin{gathered}
v(\{1\})=a, v(\{2\})=v(\{3\})=v(\{2,3\})=0, v(\{1,2\})=b, v(\{1,3\})=c, v(N)=c \\
C(v)=\{(x, 0, c-x): b \leq x \leq c\}
\end{gathered}
$$

Must find $x: \nu(v)=(x, 0, c-x)$. The relevant excesses are

$$
e(\{1,2\})=b-x, \quad e(\{2,3\})=x-c
$$

Thus

$$
\nu(v)=\left\{\frac{b+c}{2}, 0, \frac{c-b}{2}\right\}
$$

