# The Nucleolus

### Roberto Lucchetti

Politecnico di Milano

# Summary of the slides

- The excess
- O The lexicographic order
- The Nucleolus
- The nucleolus and the core



A TU game v is given

### Definition

The excess of a coalition A over the imputation x is

$$e(A, x) = v(A) - \sum_{i \in A} x_i$$

e(A, x) is a measure of the dissatisfaction of the coalition A with respect to the assignment of the imputation x

### Remark

An imputation x of the game v belongs to C(v) if and only if  $e(A,x) \leq 0$  for all A

### Definition

The lexicographic vector attached to the imputation x is the  $(2^n - 1)$ -th dimensional vector  $\theta(x)$  such that

• 
$$\theta_i(x) = e(A, x)$$
, for some  $A \subseteq N$ 

### Definition

The nucleolus solution is the solution  $\nu : \mathcal{G}(N) \to \mathbb{R}^n$  such that  $\nu(v)$  is the set of the imputations x such that  $\theta(x) \leq_L \theta(y)$ , for all y imputations of the game v

#### Remark

 $x \leq_L y$  if either x = y or there exists  $j \geq 1$  such that  $x_i = y_i$  for all i < j, and  $x_j < y_j$ .  $\leq_L$  defines a total order in any Euclidean space

### An example

### Example

Three players, v(A) = 1 if  $|A| \ge 2$ , 0 otherwise. Suppose x = (a, b, 1 - a - b), with  $a, b \ge 0$  and  $a + b \le 1$ . The coalitions S complaining  $(e(S, \emptyset) > 0)$  are those with two members.

$$e(\{1,2\}) = 1 - (a+b), e(\{1,3\}) = b, e(\{2,3\}) = a$$

We must minimize

$$\max\{1 - a - b, b, a\}$$

 $\nu = (1/3, 1/3, 1/3)$ 

Remember  $C(v) = \emptyset$ 

# Nucleolus: one point solution

#### Theorem

For every TU game v with nonmepty imputation set, the nucleolus  $\nu(v)$  is a singleton

Thus the nucleolus is a one point solution

# Nucleolus in the core

### Proposition

Suppose v is such that  $C(v) \neq \emptyset$ . Then  $\nu(v) \in C(v)$ 

**Proof** Take  $x \in C(v)$ . Then  $\theta_1(x) \leq 0$ . Thus  $\theta_1(\nu)(v) \leq 0$ . Then  $\nu(v) \in C(v)$ 

## Another example

$$v(\{1\}) = a, v(\{2\}) = v(\{3\}) = v(\{2,3\}) = 0, v(\{1,2\}) = b, v(\{1,3\}) = c, v(N) = c$$

$$C(v) = \{(x, 0, c - x) : b \le x \le c\}$$

Must find x:  $\nu(v) = (x, 0, c - x)$ . The relevant excesses are

$$e(\{1,2\}) = b - x, \quad e(\{2,3\}) = x - c$$

Thus

$$u(v) = \{\frac{b+c}{2}, 0, \frac{c-b}{2}\}$$