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Excess

A TU game v is given

Definition

The excess of a coalition A over the imputation x is

e(A, x) = v(A)−
∑
i∈A

xi

e(A, x) is a measure of the dissatisfaction of the coalition A with respect
to the assignment of the imputation x

Remark

An imputation x of the game v belongs to C (v) if and only if
e(A, x) ≤ 0 for all A
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Definition

The lexicographic vector attached to the imputation x is the (2n − 1)−th
dimensional vector θ(x) such that

1 θi (x) = e(A, x), for some A ⊆ N

2 θ1(x) ≥ θ2(x) ≥ · · · ≥ θ2n−1(x)

Definition

The nucleolus solution is the solution ν : G(N)→ Rn such that ν(v) is
the set of the imputations x such that θ(x) ≤L θ(y), for all y
imputations of the game v

Remark

x ≤L y if either x = y or there exists j ≥ 1 such that xi = yi for all i < j , and xj < yj . ≤L defines
a total order in any Euclidean space
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An example

Example

Three players, v(A) = 1 if |A| ≥ 2, 0 otherwise.
Suppose x = (a, b, 1− a− b), with a, b ≥ 0 and a + b ≤ 1. The
coalitions S complaining (e(S , ∅) > 0) are those with two members.

e({1, 2}) = 1− (a + b), e({1, 3}) = b, e({2, 3}) = a

We must minimize
max{1− a− b, b, a}

ν = (1/3, 1/3, 1/3)

Remember C (v) = ∅
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Nucleolus: one point solution

Theorem

For every TU game v with nonmepty imputation set, the nucleolus ν(v)
is a singleton

Thus the nucleolus is a one point solution
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Nucleolus in the core

Proposition

Suppose v is such that C (v) 6= ∅. Then ν(v) ∈ C (v)

Proof Take x ∈ C (v). Then θ1(x) ≤ 0. Thus θ1(ν)(v) ≤ 0. Then
ν(v) ∈ C (v)
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Another example

v({1}) = a, v({2}) = v({3}) = v({2, 3}) = 0, v({1, 2}) = b, v({1, 3}) = c, v(N) = c

C (v) = {(x , 0, c − x) : b ≤ x ≤ c}

Must find x : ν(v) = (x , 0, c − x). The relevant excesses are

e({1, 2}) = b − x , e({2, 3}) = x − c

Thus

ν(v) = {b + c

2
, 0,

c − b

2
}
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Properties for a one point solution

Let φ : G(N)→ Rn be a one point solution

Here is a list of properties φ should satisfy

1) For every v ∈ G(N) ∑
i∈N

φi (v) = v(N)

2) Let v ∈ G(N) be a game with the following property, for players i , j :
for every A not containing i , j , v(A ∪ {i}) = v(A ∪ {j}). Then

φi (v) = φj(v)

3) Let v ∈ G(N) and i ∈ N be such that v(A) = v(A ∪ {i}) for all A.
Then

φi (v) = 0

4) For every v ,w ∈ G(N), φ(v + w) = φ(v) + φ(w)
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Comments

I Property 1) is efficiency

I Property 2) is symmetry: symmetric players must take the same

I Property 3) is Null player property: a player contributing nothing to
any coalition must have nothing

I Property 4) is additivity
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The Shapley theorem

Theorem

Consider the following function σ : G(N)→ Rn

σi (v) =
∑

S∈2N\{i}

s!(n − s − 1)!

n!
[v(S ∪ {i})− v(S)]

Then σ is the only function φ fulfilling properties 1),2),3),4)
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Comments

The term

mi (v ,S) := v(S ∪ {i})− v(S)

is called the marginal contribution of player i to coalition S ∪ {i}

The Shapley value is a weighted sum of all marginal contributions of the
players.

Interpretation of the weights

Suppose the players plan to meet in a certain room at a fixed hour, and
suppose the expected arrival time is the same for all players. If player i
enters into the coalition S if and only at her arrival she find in the room
all members of S and only them, the probability to join coalition S is

s!(n − s − 1)!

n!
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Proof(1)

Proof First step: σ fulfills the properties

Efficiency:
∑n

i=1 σi (v) = v(N)
The term v(N) appears n times with coefficient (n−1)!(n−n)!

n! = 1
n . Let A 6= N; in the Shapley

formula, the term v(A) appears with positive coefficient, a times (once for every player in A), with
coefficient

(a − 1)!(n − a)!

n!

providing the positive coefficient
a!(n − a)!

n!
.

v(A) appears with negative sign n − a times (once for each player not in A) with coefficient

a!(n − a − 1)!

n!

and the result is
a!(n − a)!

n!

Thus every A 6= N appears with null coefficient in the sum
∑n

i=1 σi (v)
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Proof(2)

Symmetry. Suppose v is such that for every A not containing i, j , v(A ∪ {i}) = v(A ∪ {j}).
We must then prove σi (v) = σj (v). Write

σi (v) =
∑

S∈2N\{i∪j}

s!(n − s − 1)!

n!
[v(S ∪ {i})− v(S)] +

+
∑

S∈2N\{i∪j}

(s + 1)!(n − s − 2)!

n!
[v(S ∪ {i ∪ j})− v(S ∪ {j})] ,

σj (v) =
∑

S∈2N\{i∪j}

s!(n − s − 1)!

n!
[v(S ∪ {j})− v(S)] +

+
∑

S∈2N\{i∪j}

(s + 1)!(n − s − 2)!

n!
[v(S ∪ {i ∪ j})− v(S ∪ {i})]

The terms in the sums are equal for symmetric players

The null player property is obvious

The linearity property is obvious
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Proof(3)

Second step: Uniqueness

Consider a unanimity game uA.

I Players not belonging to A are null players: thus φ assigns zero to them

I Players in A are symmetric, so φ assigns the same to them φ must assign the same amount
to both.

I φ is efficient

Then φ is uniquely determined on the basis of G(N) of the unanimity games

The same argument applies to the game cuA, for c ∈ R

The additivity axiom implies that at most one function fulfills the properties
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Simple games

In the case of the simple games, the Shapley value becomes

σi (v) =
∑
A∈Ai

(a− 1)!(n − a)!

n!
,

where Ai is the set of the coalitions A such that

i ∈ A

A is winning

A \ {i} is not winning
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An example

Example

The game:
v({1}) = 0, v({2}) = v({3}) = 1, v({1, 2}) = 4, v({1, 3}) = 4, v({2, 3}) = 2, v(N) = 8

1 2 3

123 0 4 4

132 0 4 4

213 3 1 4

231 6 1 1

312 3 4 1

321 6 1 1
18
6

15
6

15
6

.

σ1(v) =
1!1!

3!
[v({1, 2}) − v({2})] +

1

6
[v({1, 3}) − v({3})] +

1

3
[v({N}) − v({2, 3})] = 3

σ2(v) =
2

6
+

5

6
+

4

3
=

15

6

σ3(v) =
2

6
+

5

6
+

4

3
=

15

6

Remark

It was enough to evaluate σ1 (for instance) the get σ
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A simple airport game

Example

The game:
v({1}) = 0, v({2}) = v({3}) = 1, v({1, 2}) = 4, v({1, 3}) = 4, v({2, 3}) = 2, v(N) = 8

1 2 3

123 c1 c2 − c1 c3 − c2
132 c1 0 c3 − c1
213 0 c2 c3 − c2
231 0 c2 c3 − c2
312 0 0 c3
321 0 0 c3

c1
3

c1
3

+
c2−c1

2
c3 −

c2
2
− c1

6

.

Remark

The first player uses only one km. He equally shares the cost c1 with the other players. The secondo km has a marginal cost of c2 − c1 ,
equally shared by the players using it, the rest is paid by the player, the only one using the third km
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Power indices

In simple games the Shapley value assumes also the meaning of
measuring the fraction of power of every player. To measure the relative
power of the players in a simple game, the efficiency requirement is not
anymore mandatory, and the way coalitions could form can be different
from the case of the Shapley value

Definition

A probabilistic power index ψ on the set of simple games is

ψi (v) =
∑

S∈2N\{i}

pi (S)mi (v ,S)

where pi is a probability measure on 2N\{i}

Remark

Remember: mi (v ,S) = v(S ∪ {i})− v(S)
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Semivalues

Definition

A probabilistic power index ψ on the set of simple games is a semivalue if
there exists a vector (p0, . . . , pn−1) such that

ψi (v) =
∑

S⊆N\{i}

psmi (v ,S)

Remark

Since the index is probabilistic, the two conditions must hold

I ps ≥ 0

I
∑n−1

n=0

(
n−1
s

)
ps = 1

If ps > 0 for all s, the semivalue is called regular
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Examples

These are examples of semivalues

I the Shapley value

I the Banzhaf value

βi (v) =
∑

S∈2N\{i}

1

2n−1
(v(S ∪ {i})− v(S)).

I Binomial values: ps = qs(1− q)n−s−1, for every 0 < q < 1

I the marginal value, ps = 0 for s = 0, . . . , n − 2: pn−1 = 1

I the dictatorial value ps = 0 for s = 1, . . . , n − 1: p0 = 1
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The U.N. security council

Example

Let N = {1, . . . , 15}. The permanent members 1, . . . 5 are veto players. A resolution passes provided it gets at least 9 votes,
including the five votes of the permanent members

I Let i be a player which is no veto. His marginal value is 1 if and only if it enters a coalition A such that a = 8 and A contains
the 5 veto players. Then

σi =
8! · 6! · 9 · 8 · 7

15! · 3 · 2
' 0.0018648

I The power of the veto player j can be calculated by difference and symmetry. The result is σj ' 0, 1962704

Calculating Banzhaf power index

I Let i be a player which is no veto. Then

βi =
1

214

(9

3

)
=

21

212
' 0.005127

I Let j be a veto player. Then

βj =
1

214

((10

4

)
+ . . .

(10

10

))
=

1

214

210 −
3∑

k=0

(10

k

) =
53

210
' 0.0517578

Remark

I The ratio
σi
σj
' 105.25

I The ratio
βi
βj
' 10.0951
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