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Zero sum games

General form

Definition
A two player zero sum game in strategic form is the triplet
(X, Y, f: XxY —=R)

f(x,y) is what PI1 gets from PI2, when they play x, y respectively. Thus
g = —f.
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Zero sum games

Finite game

In the finite case X ={1,2,...,n}, Y ={1,2,..., m} the game is
described by a payoff matrix P
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PI1 selects row i, PI2 selects column j.
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Zero sum games

A different approach to solve them

4 3 1
7 5 8
8 20
PI1 can guarantee herself to get at least

vy = maxmin p;;
i

P12 can guarantee himself to pay no more than
Vo = min max pj;
J 1
min; p;; = 1, min; pp; =5, min; p3; =0 vy =5
min; pjy = 8, min; pjp =5, min; p3 =8, ww=5

Rational outcome 5.Rational behavior (T= 2] = 2).
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Zero sum games

Alternative idea of solution

Suppose v; = v, := v , denote by T (J) the row (column) such that
pi > v for all j ( pg < v for all i).

Then p; = v and py = v is the rational outcome of the game

T () is an optimal strategy for Pl1 (for PI2), because he cannot get more
(cannot pay less) than v (since v is the conservative value of the second

(first) player)
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Zero sum games

For arbitrary games

(X, Y, f: XxY —=R)

The players can guarantee to themselves (almost):
PI1: v = sup, inf, f(x,y)

PL2: v, = inf, sup, f(x, y)

v1, Vo are the conservative values of the players
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Zero sum games

Optimality

Suppose v; = v, := v , strategies X and y exist such that
f(x,y)>v, f(x,y)<v

for all y and for all x

Then f(X,y) = v is the rational outcome of the game

X is an optimal strategy for PI1, y is an optimal strategy for PI2

Roberto Lucchetti Zero sum games



Zero sum games

Proposition

Let X,Y be any sets and let f : X x Y — R be an arbitrary function.
Then
supinf f(x,y) < infsupf(x,y)
x Y Y x

Proof Observe that, for all x, y,
inf f(x,y) < f(x,y) <supf(x,y)
y X

Thus
inf f(x,y) <supf(x,y)
y X

Since the left hand side of the above inequality does not depend on y
and the right hand side on x, the thesis follows H

In every game v; < v,, as expected
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Zero sum games

Equality need not hold

V1:—1,V2:1

Nothing unexpected. . .
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Zero sum games

Case vi < v

Finite case: mixed strategies. Game: n x m matrix P.

Strategy space for PI1:

To={x=(x,....%) x>0 x =1}
i=1

Strategy space for PI2:

Zm:{y:(yl,...7ym)ZijO,Z)/j:l}

foy)= > xiyps=x"Py

i=1,...,n,j=1,....,m

The mixed extension of the initial game P: (X,, X, f(x,y) = x"Py)



Zero sum games

To prove existence of a rational outcome

What must be proved, to have existence of a rational outcome:

1) Vi = W

2) there exists x fulfilling

vi = supinf f(x,y) = inf f(x,y)
x Y y

3) there exists y fulfilling

vo = infsup f(x,y) =sup f(x,¥)
Y x X

In the finite case x and y fulfilling 1) and 2) always exist; thus existence
is equivalent to 1)
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Zero sum games

The von Neumann theorem

A two player, finite, zero sum game as described by a payoff matrix P has
a rational outcome
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Proving the vN theorem

Convexity (1)

A set C C R" js said to be convex provided x,y € C, A € [0, 1] imply:

Ax+(1=MN)yecC

o The intersection of an arbitrary family of convex sets is convex

o A closed convex set with nonempty interior coincides with the
closure of its internal points

We shall call a convex combination of elements xq, . .., x, any vector x of
the form

X = A1x1 + -+ ApXn,
with A\t >0,...,A, >0and > 7 ;N =1

4
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Proving the vN theorem

Convexity (2)

Proposition

A set C is convex if and only if for every A1 > 0,..., A\, > 0 such that
ML Ai=1, foreveryci,...,co € C, forall n, then 3" N\ic; € C

If C is not convex, then there is a smallest convex set containing C: it is
the intersection of all convex sets containing C

Definition

The convex hull of a set C, denoted by co C, is:
oC% ﬂ A
AeC

where C = {A: C C A AN A is convex}
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Proving the vN theorem

Convexity (3)

Proposition

Given a set C, then

coC={> X N >0,d N=1¢eCVineN}

i=1 i=1

Theorem

Given a closed convex set C and a point x outside C, there is a unique
element p € C such that

llp = x| < lle = x|l

for all c € C. p is characterized by
e peC
o (x—p,c—p)<O0forallceC

v
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Proving the vN theorem

A first separation result

heorem

Let C be a convex proper subset of the Euclidean space R', let X € c/
C¢. Then there is an element 0 # x* € R/ such that:

(x*,c) > (x*, %)

Vee C

Proof Suppose X ¢ cl C and call p its projection on cl C. Then (X — p,c — p) < Oforall ¢ € C. Setting x* = p — x

(e —x) > Ix)2
implying
(e = (%)

Vc € C. We can choose ||x*|| = 1. If x € C \ C, take a sequence {xp} C C€ such that x, — X. From the first step of the proof,
find norm one x,¥ such that

(xy €)= (xy s xn)

Ve € C. Thus, possibly passing to a subsequence, we can suppose x; — x™, where || x™ || = 1 (so that x* # 0). Now take the limit
in the above inequality, to get:
(x",e) > (x", %)

veec M
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Proving the vN theorem

Separating hyperplane

Let C be a closed convex set in a Euclidean space, let x be on the
boundary of C. Then there is a hyperplane containing x and leaving all
of C in one of the halfspaces determined by the hyperplane

The hyperplane whose existence is established in the Corollary is said the
be an hyperplane supporting C at x

Let C be a closed convex set in a Euclidean space. Then C is the
intersection of all halfspaces containing it
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Proving the vN theorem

The separation result

Theorem

Let A, C be closed convex subsets of R! such that int A is nonempty and
int AN C = (). Then there is 0 # x* such that

(x*,a) > (x*,c)

Vae A Vee C

Proof Since 0 € (int A— C)¢, we can apply the previous separation theorem to find x* # 0 such
that
(x",x) >0

Vx € int A— C. Thus:
(x*,a) > (x", ¢)

Va € int A, Vc € C. This implies
(x",a) 2 (x", )

VaccdintA=AVvVeeC N
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Proving the vN theorem

The proof of vN theorem

Proof Suppose all entries pj; of the matrix P are positive. Consider the vectors py , - . . , p of R", where p; denotes the jth column of
the matrix P. Call C the convex hull of these vectors, set

QW xeR X <t} A vesup{t>0:Q NC=0}

Qu and C can be (weakly) separated by an hyperplane: there are coefficients X1, . . . , Xp, not all zero, and b € R such that
n n
SoRjup = (x,u) < b <D Fw = (%, w)
i=1 i=1

forallu = (uy,...,up) € Qu,w = (wy,...,wp) € C. It holds
o All X; must be nonnegative and, since they cannot be all zero, we can assume > X =1
b = v; First of all, since v := (v, . . ., v) € Qy we have, from (X, 7) < v that b > v. Suppose now b > v, and take
a > 0sosmallthat b > v+ a Thensup{3:7_; Xju; : u € Qu4a} < b, and this implies Q 4, N C = O, against the
definition of v
Q anco
Given B € Ty, let w = ijzl Bjpj € C (thus w; = E_’/ﬂ:l ij,-j). Thus

f(x, B) = D_%iBjpjj = > Xjw; = v
i i=1

Now, let w € Q, N C. Since w € C, then w = ijzl 6jpj, for some ¥ 3 B = (B, ..., Bm). Sincew € Qy, then w; < v
for all i. Thus, for all X € X, we get




Proving the vN theorem

Finding optimal strategies:PI1

PI1 must choose a probability distribution X, > x = (x1, ..., X,):

X1p11 + -+ XpPar 2V
X1pyj &+ XaPpj 2V

X1P1m + -+ XpPpm = V

where v must be as large as possible
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Proving the vN theorem

Finding optimal strategies:PI2

P12 must choose a probability distribution X, 3 y = (y1,- .-, Ym):

yipir + -+ YmbPim < w
yipir + -+ YmPim < w

YiPo1+ o+ YmPom S W

where w must be as small as possible
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Proving the vN theorem

In matrix form

PI1:
MaXy,, V
Ptx > vl (1)
x>0 (1,x)=1

PI2:
min, , w :
Py < wl, (2)

y>0 (Ly) =1

Easy to see that (1) and (2) are dual problems, they are feasible, and the
two values agree
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Proving the vN theorem

Summarizing

A finite zero sum game has always rational outcome in mixed strategies

The set of optimal strategies for the players is a nonempty closed convex
set

The outcome, at each pair of optimal strategies, is the common
conservative value v of the players
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Proving the vN theorem

Symmetric games

Definition

A square matrix n X n P = (pjj) is said to be antisymmetric provided
pj =—pji foralli,j=1,...,n.

A (finite) zero sum game is said to be fair if the associated matrix is
antisymmetric

In fair games there is no favorite player
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Proving the vN theorem

Fair outcome

Proposition

If P = (pjj) is antisymmetric the value is 0 and X is an optimal strategy
for PI1 if and only if it is optimal for PI2

Proof Since
x"Px = (x'Px)! = x'P'x = —x"Px

f(x,x) =0 for all x thus vy <0,v, >0

Then v =20

If X is optimal for the first player, X'Py > 0 for all y
Thus y'Px < 0 forall y € X, and

X is optimal for the second player H
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Proving the vN theorem

Finding optimal strategies in a fair game

Need to solve the system of inequalities

X1p11 + -+ XpPp1 = 0
X1p1j + -+ XnPnj = 0 (3)

X1p1m+ +annm Z 0

with the extra conditions:
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Proving the vN theorem

A proposed exercise

Find the optimal strategies of the following fair game:

0 3 -2 0
3 0 0 4

P=1 2 o o -3
0 -4 3 0
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Proving the vN theorem

Toward Indifference Principle

In the system

x1p11+ -+ XpPn1 =V
X1p1j + + + XoPnj =V (4)

X1P1m + +annm Z v

when a strict inequality is possible?
Suppose X is optimal for PI1 and
X1p1j + -+ Xppnj >V

Then PI2 never plays column j

Otherwise PI1 would get more than v playing X
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Proving the vN theorem

The Principle

There is a nonempty set of indices J; = {Ji,...,jk} such that

X1prjy + o0+ XnPrjy = X1Pj, + 0+ XnPpjy = -0 = X1PLj + 0 XnPajy

and

X1P1jy A XnPpjy >X1P1j + A XnPij
forall j ¢ J

Jy is the set of columns played with positive probability by PI2 at some
optimal strategy

Also . if j ¢ Jy there exists an optimal strategy for PI1 providing her
a payoff > v against column j
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