Zero sum games

Roberto Lucchetti

Politecnico di Milano

General form

Definition

A two player zero sum game in strategic form is the triplet $(X, Y, f : X \times Y \to \mathbb{R})$

f(x,y) is what Pl1 gets from Pl2, when they play x, y respectively. Thus g=-f.

Finite game

In the finite case $X = \{1, 2, ..., n\}$, $Y = \{1, 2, ..., m\}$ the game is described by a payoff matrix P

Example

$$P = \left(\begin{array}{ccc} 4 & 3 & 1 \\ 7 & 5 & 8 \\ 8 & 2 & 0 \end{array}\right)$$

Pl1 selects row i, Pl2 selects column j.

A different approach to solve them

$$\left(\begin{array}{ccc} 4 & 3 & 1 \\ 7 & 5 & 8 \\ 8 & 2 & 0 \end{array}\right).$$

PI1 can guarantee herself to get at least

$$v_1 = \max_i \min_j p_{ij}$$

Pl2 can guarantee himself to pay no more than

$$v_2 = \min_j \max_i p_{ij}$$

$$\min_j p_{1j} = 1$$
, $\min_j p_{2j} = 5$, $\min_j p_{3j} = 0$ $v_1 = 5$
 $\min_i p_{i1} = 8$, $\min_j p_{i2} = 5$, $\min_j p_{i3} = 8$, $v_2 = 5$

Rational outcome 5. Rational behavior ($\bar{1} = 2, \bar{j} = 2$).

Alternative idea of solution

Suppose $v_1 = v_2 := v$, denote by $\overline{\iota}(\overline{\jmath})$ the row (column) such that $p_{\overline{\imath}j} \geq v$ for all j ($p_{\overline{\imath}j} \leq v$ for all i).

Then $p_{\overline{i}\overline{j}}=v$ and $p_{\overline{i}\overline{j}}=v$ is the rational outcome of the game

Remark

 $\bar{\iota}$ ($\bar{\jmath}$) is an optimal strategy for Pl1 (for Pl2), because he cannot get more (cannot pay less) than ν (since ν is the conservative value of the second (first) player)

For arbitrary games

$$(X, Y, f : X \times Y \rightarrow \mathbb{R})$$

The players can guarantee to themselves (almost):

PI1:
$$v_1 = \sup_x \inf_y f(x, y)$$

PL2:
$$v_2 = \inf_y \sup_x f(x, y)$$

 v_1, v_2 are the conservative values of the players

Optimality

Suppose $v_1=v_2:=v$, strategies \bar{x} and \bar{y} exist such that

$$f(\bar{x}, y) \ge v, \quad f(x, \bar{y}) \le v$$

for all y and for all x

Then $f(\bar{x}, \bar{y}) = v$ is the rational outcome of the game

 \bar{x} is an optimal strategy for PI1, \bar{y} is an optimal strategy for PI2

$v_1 \leq v_2$

Proposition

Let X, Y be any sets and let $f: X \times Y \to \mathbb{R}$ be an arbitrary function. Then

$$\sup_{x}\inf_{y}f(x,y)\leq\inf_{y}\sup_{x}f(x,y)$$

Proof Observe that, for all x, y,

$$\inf_{y} f(x,y) \le f(x,y) \le \sup_{x} f(x,y)$$

Thus

$$\inf_{y} f(x,y) \le \sup_{x} f(x,y)$$

Since the left hand side of the above inequality does not depend on y and the right hand side on x, the thesis follows

In every game $v_1 < v_2$, as expected

Equality need not hold

Example

$$P = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right).$$

$$v_1 = -1, v_2 = 1$$

Nothing unexpected...

Case $v_1 < v_2$

Finite case: mixed strategies. Game: $n \times m$ matrix P.

Strategy space for PI1:

$$\Sigma_n = \{x = (x_1, \dots, x_n) : x_i \ge 0, \sum_{i=1}^n x_i = 1\}$$

Strategy space for PI2:

$$\Sigma_m = \{y = (y_1, \dots, y_m) : y_j \ge 0, \sum_{i=1}^m y_i = 1\}$$

$$f(x,y) = \sum_{i=1,...,n,j=1,...,m} x_i y_j p_{ij} = x^t P y$$

The mixed extension of the initial game $P: (\Sigma_n, \Sigma_m, f(x, y) = x^t P y)$

To prove existence of a rational outcome

What must be proved, to have existence of a rational outcome:

- 1) $v_1 = v_2$
- 2) there exists \bar{x} fulfilling

$$v_1 = \sup_{x} \inf_{y} f(x, y) = \inf_{y} f(\bar{x}, y)$$

3) there exists \bar{y} fulfilling

$$v_2 = \inf_{y} \sup_{x} f(x, y) = \sup_{x} f(x, \bar{y})$$

In the finite case \bar{x} and \bar{y} fulfilling 1) and 2) always exist; thus existence is equivalent to 1)

The von Neumann theorem

Theorem

A two player, finite, zero sum game as described by a payoff matrix P has a rational outcome

Convexity (1)

Definition

A set $C \subset \mathbb{R}^n$ is said to be convex provided $x, y \in C$, $\lambda \in [0, 1]$ imply:

$$\lambda x + (1 - \lambda)y \in C$$

Remark

- The intersection of an arbitrary family of convex sets is convex
- A closed convex set with nonempty interior coincides with the closure of its internal points

Definition

We shall call a convex combination of elements x_1, \ldots, x_n any vector x of the form

$$x = \lambda_1 x_1 + \cdots + \lambda_n x_n$$

with
$$\lambda_1 \geq 0, \ldots, \lambda_n \geq 0$$
 and $\sum_{i=1}^n \lambda_i = 1$

10/1

Convexity (2)

Proposition

A set C is convex if and only if for every $\lambda_1 \geq 0, \ldots, \lambda_n \geq 0$ such that $\sum_{i=1}^n \lambda_i = 1$, for every $c_1, \ldots, c_n \in C$, for all n, then $\sum_{i=1}^n \lambda_i c_i \in C$

If C is not convex, then there is a smallest convex set containing C: it is the intersection of all convex sets containing C

Definition

The convex hull of a set C, denoted by co C, is:

$$\operatorname{co} C \stackrel{\operatorname{def}}{=} \bigcap_{A \in \mathcal{C}} A$$

where $C = \{A : C \subset A \land A \text{ is convex}\}$

Convexity (3)

Proposition

Given a set C, then

$$co C = \{\sum_{i=1}^{n} \lambda_{i} c_{i} : \lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i} = 1, c_{i} \in C \ \forall i, n \in \mathbb{N}\}$$

Theorem

Given a closed convex set C and a point x outside C, there is a unique element $p \in C$ such that

$$||p-x|| \leq ||c-x||$$

for all $c \in C$. p is characterized by

- p ∈ C
- $\langle x-p,c-p\rangle \leq 0$ for all $c\in C$

A first separation result

Theorem

Let C be a convex proper subset of the Euclidean space \mathbb{R}^l , let $\bar{x} \in cl$ C^c . Then there is an element $0 \neq x^* \in \mathbb{R}^l$ such that:

$$\langle x^*, c \rangle \ge \langle x^*, \bar{x} \rangle$$

 $\forall c \in C$

Proof Suppose $\bar{x} \notin \operatorname{cl} C$ and call p its projection on cl C. Then $\langle \bar{x}-p,c-p \rangle \leq 0$ for all $c \in C$. Setting $x^*=p-\bar{x}$

$$\langle x^*, c - \bar{x} \rangle > ||x^*||^2$$

implying

$$\langle x^*, c \rangle \ge \langle x^*, \bar{x} \rangle$$

 $\forall c \in C$. We can choose $\|x^*\| = 1$. If $\bar{x} \in \overline{C} \setminus C$, take a sequence $\{x_n\} \subset C^C$ such that $x_n \to \bar{x}$. From the first step of the proof, find norm one x_n^* such that

$$\langle x_n^*, c \rangle \ge \langle x_n^*, x_n \rangle$$

 $\forall c \in C$. Thus, possibly passing to a subsequence, we can suppose $x_n^* \to x^*$, where $\|x^*\| = 1$ (so that $x^* \neq 0$). Now take the limit in the above inequality, to get:

$$\langle x^*, c \rangle \ge \langle x^*, \bar{x} \rangle$$

 $\forall c \in C$

16/2

Separating hyperplane

Corollary

Let C be a closed convex set in a Euclidean space, let x be on the boundary of C. Then there is a hyperplane containing x and leaving all of C in one of the halfspaces determined by the hyperplane

The hyperplane whose existence is established in the Corollary is said the be an hyperplane supporting C at x

Corollary

Let C be a closed convex set in a Euclidean space. Then C is the intersection of all halfspaces containing it

The separation result

Theorem

Let A, C be closed convex subsets of \mathbb{R}^l such that int A is nonempty and int $A \cap C = \emptyset$. Then there is $0 \neq x^*$ such that

$$\langle x^*, a \rangle \ge \langle x^*, c \rangle$$

 $\forall a \in A, \forall c \in C$

Proof Since $0 \in (\text{int } A - C)^c$, we can apply the previous separation theorem to find $x^* \neq 0$ such that

$$\langle x^*, x \rangle > 0$$

 $\forall x \in \text{int } A - C$. Thus:

$$\langle x^*, a \rangle > \langle x^*, c \rangle$$

 $\forall a \in \text{int } A, \ \forall c \in C. \text{ This implies}$

$$\langle x^*, a \rangle > \langle x^*, c \rangle$$

 $\forall a \in \mathsf{cl} \; \mathsf{int} \; A = A, \; \forall c \in C$

The proof of vN theorem

Proof Suppose all entries p_{ij} of the matrix P are positive. Consider the vectors p_1, \ldots, p_m of \mathbb{R}^n , where p_j denotes the j^{th} column of the matrix P. Call C the convex hull of these vectors, set

$$Q_t \stackrel{\text{def}}{=} \{ x \in \mathbb{R}^n : x_i \le t \} \land v = \sup \{ t \ge 0 : Q_t \cap C = \emptyset \}$$

 Q_V and C can be (weakly) separated by an hyperplane: there are coefficients $\bar{x}_1,\ldots,\bar{x}_n$, not all zero, and $b\in\mathbb{R}$ such that

$$\sum_{i=1}^n \bar{x}_i u_i = \langle \bar{x}, u \rangle \leq b \leq \sum_{i=1}^n \bar{x}_i w_i = \langle \bar{x}, w \rangle$$

for all $u=(u_1,\ldots,u_n)\in Q_V,\,w=(w_1,\ldots,w_n)\in C.$ It holds

- 1 All \bar{x}_i must be nonnegative and, since they cannot be all zero, we can assume $\sum \bar{x}_i = 1$
- $Q_V \cap C \neq \emptyset$

Given $\beta \in \Sigma_m$, let $w = \sum_{j=1}^m \beta_j p_j \in \mathcal{C}$ (thus $w_i = \sum_{j=1}^m \beta_j p_{ij}$). Thus

$$f(\bar{x}, \beta) = \sum_{i,j} \bar{x}_i \beta_j p_{ij} = \sum_{i=1}^n \bar{x}_i w_i \ge v$$

Now, let $\bar{w} \in Q_V \cap C$. Since $\bar{w} \in C$, then $\bar{w} = \sum_{j=1}^m \bar{\beta}_j p_j$, for some $\Sigma_m \ni \bar{\beta} = (\bar{\beta}_1, \dots, \bar{\beta}_m)$. Since $\bar{w} \in Q_V$, then $\bar{w}_i \le v$ for all i. Thus, for all $\lambda \in \Sigma_n$, we get

$$f(\lambda, \bar{\beta}) = \sum_{ii} \lambda_i \bar{\beta}_j p_{ij} = \sum_i \lambda_i \bar{w}_i \leq v \sum_i \lambda_i = v$$

19/2

Finding optimal strategies:PI1

Pl1 must choose a probability distribution $\Sigma_n \ni x = (x_1, \dots, x_n)$:

$$x_1p_{11} + \cdots + x_np_{n1} \ge v$$

$$\vdots$$

$$x_1p_{1j} + \cdots + x_np_{nj} \ge v$$

$$\vdots$$

$$x_1p_{1m} + \cdots + x_np_{nm} \ge v$$

where v must be as large as possible

Finding optimal strategies:PI2

PI2 must choose a probability distribution $\Sigma_m \ni y = (y_1, \dots, y_m)$:

$$y_1p_{11} + \dots + y_mp_{1m} \le w$$

$$\dots$$

$$y_1p_{i1} + \dots + y_mp_{im} \le w$$

$$\dots$$

$$y_1p_{n1} + \dots + y_mp_{nm} \le w$$

where w must be as small as possible

In matrix form

PI1:

$$\begin{cases}
\max_{x,v} v : \\
P^t x \ge v \mathbf{1}_m \\
x \ge 0 \quad \langle 1, x \rangle = 1
\end{cases}$$
(1)

PI2:

$$\begin{cases}
\min_{y,w} w : \\
Py \le w1_n \\
y \ge 0 \quad \langle 1, y \rangle = 1
\end{cases}$$
(2)

Easy to see that (1) and (2) are dual problems, they are feasible, and the two values agree

Summarizing

A finite zero sum game has always rational outcome in mixed strategies

The set of optimal strategies for the players is a nonempty closed convex set

The outcome, at each pair of optimal strategies, is the common conservative value ν of the players

Symmetric games

Definition

A square matrix $n \times n$ $P = (p_{ij})$ is said to be antisymmetric provided $p_{ij} = -p_{ji}$ for all i, j = 1, ..., n.

A (finite) zero sum game is said to be fair if the associated matrix is antisymmetric

In fair games there is no favorite player

Fair outcome

Proposition

If $P = (p_{ij})$ is antisymmetric the value is 0 and \bar{x} is an optimal strategy for Pl1 if and only if it is optimal for Pl2

Proof Since

$$x^t P x = (x^t P x)^t = x^t P^t x = -x^t P x$$

$$f(x,x) = 0$$
 for all x thus $v_1 \leq 0, v_2 \geq 0$

Then v = 0

If \bar{x} is optimal for the first player, $\bar{x}^t P y \ge 0$ for all y

Thus $y^t P \bar{x} \leq 0$ for all $y \in \Sigma_n$, and

 \bar{x} is optimal for the second player

Finding optimal strategies in a fair game

Need to solve the system of inequalities

$$x_{1}p_{11} + \dots + x_{n}p_{n1} \ge 0$$

$$\dots$$

$$x_{1}p_{1j} + \dots + x_{n}p_{nj} \ge 0$$

$$\dots$$

$$x_{1}p_{1m} + \dots + x_{n}p_{nm} \ge 0$$
(3)

with the extra conditions:

$$x_i \ge 0, \qquad \sum_{i=1}^n x_i = 1$$

A proposed exercise

Example

Find the optimal strategies of the following fair game:

$$P = \left(\begin{array}{cccc} 0 & 3 & -2 & 0 \\ -3 & 0 & 0 & 4 \\ 2 & 0 & 0 & -3 \\ 0 & -4 & 3 & 0 \end{array}\right)$$

Toward Indifference Principle

In the system (with v unknown!)

$$x_{1}p_{11} + \dots + x_{n}p_{n1} \ge v$$

$$\dots$$

$$x_{1}p_{1j} + \dots + x_{n}p_{nj} \ge v$$

$$\dots$$

$$x_{1}p_{1m} + \dots + x_{n}p_{nm} \ge v$$

$$(4)$$

when a strict inequality is possible?

Suppose \bar{x} is optimal for PI1 and

$$\bar{x}_1 p_{1j} + \cdots + \bar{x}_n p_{nj} > v$$

Then Pl2 never plays column j

Otherwise PI1 would get more than v playing \bar{x}

The Principle

There is a nonempty set of indices $J_1 = \{j_1, \dots, j_k\}$ such that

$$x_1p_{1j_1} + \cdots + x_np_{nj_1} = x_1p_{1j_2} + \cdots + x_np_{nj_2} = \ldots = x_1p_{1j_k} + \cdots + x_np_{nj_k}$$

and

$$x_1p_{1j_1} + \cdots + x_np_{nj_1} > x_1p_{1j} + \cdots + x_np_{nj}$$

for all $j \notin J_1$

 J_1 is the set of columns played with positive probability by PI2 at some optimal strategy

Also true: if $j \notin J_1$ there exists an optimal strategy for PI1 providing her a payoff > v against column j