# Zero sum games

Roberto Lucchetti

Politecnico di Milano

# Summary of the slides

- Zero sum game in strategic form
- Conservative values of the players
- Optimal strategies for the players and common value
- $v_1 \le v_2$  for arbitrary games
- Mixed extension of the (finite) zero sum game
- The von Neumann theorem
- Finding optimal strategies for the players as LP problems
- Some basics of Linear Programming
- Duality: the weak and the strong duality theorems
- Complementarity conditions
- Equivalent formulations for finding optimal strategies
- Complementarity conditions in the zero sum games
- Nash equilibria profiles, optimal strategies and the value in zero sum game
- Fair games

### General form

#### Definition

A two player zero sum game in strategic form is the triplet  $(X, Y, f : X \times Y \to \mathbb{R})$ 

X is the strategy space of Pl1, Y the strategy space of Pl2, f(x,y) is what Pl1 gets from Pl2, when they play x, y respectively. Thus f is the utility function of Pl1, while for Pl2 the utility function g is g = -f.

### Finite game

In the finite case  $X = \{1, 2, ..., n\}$ ,  $Y = \{1, 2, ..., m\}$  the game is described by a payoff matrix P

### Example

$$P = \left(\begin{array}{ccc} 4 & 3 & 1 \\ 7 & 5 & 8 \\ 8 & 2 & 0 \end{array}\right)$$

Pl1 selects row i, Pl2 selects column j. In general

$$\left(\begin{array}{cccc}
p_{11} & \dots & p_{1m} \\
\dots & \dots & \dots \\
p_{n1} & \dots & p_{nm}
\end{array}\right)$$

where  $p_{ij}$  is the payment of Pl2 to Pl1 when they play i, j respectively.

### How to solve them

### Consider the game

$$\left(\begin{array}{ccc}
4 & 3 & 1 \\
7 & 5 & 8 \\
8 & 2 & 0
\right)$$

- $\min_j p_{1j} = 1$ ,  $\min_j p_{2j} = 5$ ,  $\min_j p_{3j} = 0$   $v_1 = 5$   $\max_i p_{i1} = 8$ ,  $\max_i p_{i2} = 5$ ,  $\max_i p_{i3} = 8$ ,  $v_2 = 5$

#### Thus

PI1 can guarantee herself to get at least

$$v_1 = \max_i \min_j p_{ij}$$

Pl2 can guarantee himself to pay no more than

$$v_2 = \min_i \max_i p_{ij}$$

In the example  $v_1 = v_2 = 5$  and Rational outcome 5. Rational behavior  $(\bar{1} = 2, \bar{1} = 2)$ 

### Alternative idea of solution

### Suppose

- $v_1 = v_2 := v$ ,
- $\bar{i}$  a row such that  $p_{\bar{i}i} \geq v$  for all i
- $(\overline{J})$  a column such that  $p_{i\overline{I}} \leq v$  for all i

Then  $p_{\overline{1}} = v$  and  $p_{\overline{1}} = v$  is the rational outcome of the game

#### Remark

- $\bar{\imath}$  is an optimal strategy for Pl1, because she cannot get more than v, since  $v=v_2$  is the conservative value of the second player
- $\bar{j}$  is an optimal strategy for Pl2, because he cannot pay less than v, since  $v = v_1$  is the conservative value of the first player

#### Remark

Observe  $\bar{i}$  maximizes the function  $\alpha(i) = \min_j p_{ij}$ ,  $\bar{j}$  minimizes the function  $\beta(j) = \max_i p_{ij}$ 

# For arbitrary games

$$(X, Y, f: X \times Y \rightarrow \mathbb{R})$$

The players can guarantee to themselves (almost):

PI1: 
$$v_1 = \sup_x \inf_y f(x, y)$$

PL2: 
$$v_2 = \inf_y \sup_x f(x, y)$$

 $v_1, v_2$  are the conservative values of the players

If  $v_1 = v_2$ , we set  $v = v_1 = v_2$  and we say that the game has value v

# Optimality

### Suppose

- ② there exists strategy  $\bar{x}$  such that  $f(\bar{x}, y) \geq v$  for all  $y \in Y$
- **1** there exists strategy  $\bar{y}$  such that  $f(x, \bar{y}) \leq v$  for all  $x \in X$

#### Then

- v is the rational outcome of the game
- $\bar{x}$  is an optimal strategy for PI1
- $\bar{y}$  is an optimal strategy for PI2

#### Observe

- $\bar{x}$  is optimal for Pl1 since it maximizes the function  $\alpha(x) = \inf_{y} f(x, y)$
- $\bar{x}$  is optimal for Pl2 since it minimizes the function  $\beta(y) = \sup_{x} f(x, y)$
- $\alpha(x)$  is the value of the optimal choice of Pl2 if he knows that Pl1 plays x; symmetrically for  $\beta(y)$

## $v_1 \leq v_2$

### Proposition

Let X, Y be nonempty sets and let  $f: X \times Y \to \mathbb{R}$  be an arbitrary real valued function. Then

$$\sup_{x}\inf_{y}f(x,y)\leq\inf_{y}\sup_{x}f(x,y)$$

**Proof** Observe that, for all x, y,

$$\inf_{y} f(x,y) \le f(x,y) \le \sup_{x} f(x,y)$$

Thus

$$\alpha(x) = \inf_{y} f(x, y) \le \sup_{y} f(x, y) = \beta(y)$$

Since for all  $x \in X$  and  $y \in Y$  it holds

$$\alpha(x) \leq \beta(y)$$

it follows

$$v_1 = \sup_{x} \alpha(x) \le \inf_{y} \beta(y) = v_2$$

As a consequence, in every game  $v_1 \leq v_2$ 

# Equality need not hold

### Example

$$P = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right).$$

$$v_1 = -1, v_2 = 1$$

Nothing unexpected...

## Case $v_1 < v_2$

Finite case: mixed strategies. Game:  $n \times m$  matrix P.

Strategy space for PI1:

$$\Sigma_n = \{x = (x_1, \dots, x_n) : x_i \ge 0, \sum_{i=1}^n x_i = 1\}$$

Strategy space for PI2:

$$\Sigma_m = \{y = (y_1, \dots, y_m) : y_j \ge 0, \sum_{j=1}^m y_j = 1\}$$

$$f(x,y) = \sum_{i=1,\ldots,n,j=1,\ldots,m} x_i y_j p_{ij} = x^t P y$$

The mixed extension of the initial game  $P: (\Sigma_n, \Sigma_m, f(x, y) = x^t P y)$ 

#### Remark

 $\Sigma_n$  is called the fundamental simplex in  $\mathbb{R}^n$ : it is the smallest convex set containing the extreme points  $(1,0,\ldots,0),\ldots,(0,\ldots,1)$ . The extreme points of the simplex correspond to pure strategies.

### The von Neumann theorem

### Theorem

A two player, finite, zero sum game as described by a payoff matrix P has a rational outcome

# Finding optimal strategies

In a finite zero sum game P to find optimal strategies for the players, we need to find  $\bar{x}, \bar{y}$  fulfilling:

- $\bar{x}^t P y \geq v \quad \forall y$
- $x^t P \bar{y} \leq v \quad \forall x$ .

Two facts must to be taken into account

- the value v is unknown
- an optimal strategy for a player, fixed the strategy of the other player, can be found among the pure strategies.

Taking the above remarks into account, the problem of finding optimal strategies can be reformulated as a Linear Programming problem.

# Finding optimal strategies:PI1

PI1 must choose a probability distribution  $\Sigma_n \ni x = (x_1, \dots, x_n)$  in order to maximize z with the constraints:

$$x_1p_{11} + \cdots + x_np_{n1} \ge z$$
 $\dots$ 
 $x_1p_{1j} + \cdots + x_np_{nj} \ge z$ 
 $\dots$ 
 $x_1p_{1m} + \cdots + x_np_{nm} \ge z$ 

If  $x \in \Sigma_n$  satisfies the above system of inequalities, then Pl1 obtains at least z against all columns of the Payoff matrix, i.e. against all pure strategies, corresponding to the extreme points of the simplex. Such x then guarantees Pl1 to get at least y also against every mixed strategy of Pl2. Thus a solution is an optimal strategy of Pl1 and the value of the problem is exactly y, the value of the game.

# Finding optimal strategies:PI2

Following the same argument: Pl2 must choose a probability distribution  $\Sigma_m \ni y = (y_1, \dots, y_m)$  in order to minimize w with the constraints:

$$y_1p_{11} + \dots + y_mp_{1m} \le w$$

$$\dots$$

$$y_1p_{i1} + \dots + y_mp_{im} \le w$$

$$\dots$$

$$y_1p_{n1} + \dots + y_mp_{nm} \le w$$

Again the value of this problem is v, the value of the game, thanx to von Neumann theorem.

### In matrix form

PI1:

$$\begin{cases}
 \text{max}_{x,v} \ v : \\
 P^t x \ge v 1_m \\
 x \ge 0 \quad 1^t x = 1
\end{cases}$$
(1)

PI2:

$$\begin{cases}
\min_{y,w} w : \\
Py \le w1_n \\
y \ge 0 \quad 1^t y = 1
\end{cases}$$
(2)

where 1 is a vector of the right dimension made by all 1's. (1) and (2) are dual Linear Programming (LP) problems.

# Dual linear programs: Form 1

#### Definition

The following two linear programs are said to be in duality

$$(P) \begin{cases} \min c^t x \\ Ax \ge b \\ x \ge 0 \end{cases} \qquad (D) \begin{cases} \max b^t y \\ A^T y \le c \\ y \ge 0 \end{cases}$$

The min problem is called primal problem and the max is called dual problem.

# Dual linear programs: Form 2

#### Definition

The following two linear programs are said to be in duality

(P) 
$$\begin{cases} \min c^t x \\ Ax \ge b \end{cases}$$
 (D) 
$$\begin{cases} \max b^t y \\ A^T y = c \\ y \ge 0 \end{cases}$$

There is a standard way to pass from the first form of (P) (where non negativity constraint are present) to the second form of (P), and conversely; dualizing the problems leads to equivalent form of the dual problems.

## Feasibility of dual programs

Problem is said feasible if there is at least one vector fulfilling the constraints.

Easy examples show that, given two problems in duality,

- They can be both infeasible
- Only one can be feasible
- Both can be feasible

# Example 1

Consider

$$\begin{cases} \min x_1 + x_2 \\ x_1 + 2x_2 \ge 1 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Its dual is

$$\begin{cases} \max y \\ y \le 1 \\ 2y \le 1 \\ y \ge 0 \end{cases}$$

Since  $(x_1, x_2) = (0, \frac{1}{2})$  fulfills the constraints of the primal problem and  $y = \frac{1}{2}$  fulfills the constraints of the dual problem, they are both feasible.

# Examples 2,3

Consider

$$\begin{cases} \min x_1 - x_2 \\ x_1 + x_2 \ge 2 \\ -x_1 - x_2 \ge -1 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Its dual is

$$\begin{cases} \max 2y_1 - y_2 \\ y_1 - y_2 \le 1 \\ y_1 - y_2 \le -1 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

The primal is infeasible (no  $x=(x_1,x_2)$  can fulfill at the same time the inequalities  $x_1+x_2 \ge 2$  and  $-x_1-x_2 \ge -1$ ), while for all  $n \ge 0$  (n,n+1) is feasible in the dual.

Taking A = 0, b = (1, ..., 1) and c = (-1, ..., -1) shows that both problems can be infeasible.

## Weak duality theorem

#### Theorem

Let v be the value of the primal  $\min$  problem and V the value of the dual  $\max$  problem. Then

$$v \geq V$$

#### **Proof**

Form 1:

$$c^t x \ge (A^t y)^t x = y^t A x \ge y^t b = b^t y$$

Since this is true for all admissible x and y the result follows.

Form 2:

$$c^t x = (A^t y)^t x = y^t A x \ge y^t b = b^t y$$

# Strong duality theorem

#### Theorem

• If the primal and dual problems are feasible, then both problems have optimal solutions  $\bar{x}, \bar{y}$  and the optimal values coincide

$$v = c^t \bar{x} = b^t \bar{y} = V.$$

In this case we say that there is no duality gap.

- If the primal is feasible and the dual is infeasible, then  $v=V=-\infty$
- If the primal is infeasible and the dual is feasible, then  $v=V=+\infty$
- If both the primal and the dual are infeasible, then  $v = \infty > V = -\infty$

#### Corollary

If one problem is feasible and has an optimal solution, then also the dual problem is feasible and has solutions. Moreover there is no duality gap.

# Complementarity conditions: Form 1

$$(P) \begin{cases} \min c^t x \\ Ax \ge b, x \ge 0 \end{cases} ; \qquad (D) \begin{cases} \max b^t y \\ A^T y \le c, y \ge 0 \end{cases}$$

#### Theorem

Let  $\bar{x}, \bar{y}$  be primal and dual feasible. Then  $\bar{x}, \bar{y}$  are simultaneously optimal iff

$$(CC) \begin{cases} (\forall i = 1, \dots, n) & \bar{x}_i > 0 \Rightarrow \sum_{j=1}^m a_{ji} \bar{y}_j = c_i \\ (\forall j = 1, \dots, m) & \bar{y}_j > 0 \Rightarrow \sum_{i=1}^n a_{ij} \bar{x}_i = b_j \end{cases}$$

**Proof** Since  $c^t x \ge y^t A x \ge b^t y$  it follows that  $\bar{x}, \bar{y}$  are optimal iff

$$c^t \bar{x}^t = \bar{y}^t A \bar{x} = b^t \bar{y}$$

This is equivalent to

$$\bar{x}^t(A^t\bar{y}-c)=0$$
 and  $\bar{y}^t(A\bar{x}-b)=0$ 

Since  $\bar{x}, \bar{y} \geq 0$  and  $A\bar{x} \geq b, A^t\bar{y} \leq c$  the latter are equivalent to (CC).

24/37

## An example

Consider

$$\begin{cases} \min x_1 + x_2 : \\ 2x_1 + x_2 \ge 2 \\ x_1 + 2x_2 \le 2 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Its dual is

$$\begin{cases} \max 2y_1 - 2y_2 : \\ 2y_1 - y_2 \le 1 \\ y_1 - 2y_2 \le 1 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

We have 
$$v=1$$
,  $(\bar{x}_1,\bar{x}_2)=(1,0)$ ;  $V=1$ ,  $(\bar{y}_1,\bar{y}_2)=(\frac{1}{2},0)$ .

Check of the complementarity conditions:

$$\bar{y}_1 = \frac{1}{2} > 0 \Longrightarrow 2\bar{x}_1 + \bar{x}_2 = 2, \ \bar{x}_1 = 1 > 0 \Longrightarrow 2y_1 - y_2 = 1$$

## Equivalent formulation

Back to a zero sum game described by a payoff matrix P. We can assume, w.l.o.g., that  $p_{ij} > 0$  for all i, j. This implies v > 0

Set  $\alpha_i = \frac{x_i}{v}$ . Then  $\sum x_i = 1$  becomes  $\sum \alpha_i = \frac{1}{v}$  and maximizing v is equivalent to minimizing  $\sum \alpha_i$ . Set  $\beta_j = \frac{y_j}{v}$  and do the same as before.

Consider the two problems in duality

$$(P) \begin{cases} \min c^t \alpha \\ A\alpha \ge b \\ \alpha \ge 0 \end{cases} \qquad (D) \begin{cases} \max b^t \beta \\ A^t \beta \le c \\ \beta \ge 0 \end{cases}$$

where  $c^t = (1, ..., 1)$ ,  $b^t = (1, ..., 1)$ ,  $A = P^t$ .

Denote by v the common value of the two problems. We have

- x is optimal strategy for PI1 if and only if  $x = v\alpha$  for some  $\alpha$  optimal solution of (P)
- y is optimal strategy for PI2 if and only if  $y = v\beta$  for some  $\beta$  optimal solution of (D)

## Complementarity conditions in zero sum games

Write again the complementarity conditions for the above problems, being x,y strategies for the two players:

$$(CC) \begin{cases} (\forall i = 1, \dots, n) & \bar{x}_i > 0 \Rightarrow \sum_{j=1}^m p_{ij}\bar{y}_j = v \\ (\forall j = 1, \dots, m) & \bar{y}_j > 0 \Rightarrow \sum_{i=1}^n p_{ji}\bar{x}_i = v \end{cases}$$

Interpretation:

- **①** Since  $\bar{y}$  is optimal for PI2, he is able to pay no more than v against all strategies of the first player
- 4 If  $\bar{x}_i > 0$  then PI1 plays row i with positive probability

Thus the complementarity conditions show (one more time!) that, if played with positive probability, the row i must be optimal for PI1 (since by (1) we know that she gets less or equal to v by playing the other rows).

## Summarizing

- A finite zero sum game has always rational outcome in mixed strategies
- The set of optimal strategies for the players is a nonempty closed convex set
- The outcome, at each pair of optimal strategies, is the common conservative value v of the players

# The Nash equilibria of a zero sum game

#### Theorem

Let X, Y be (nonempty) sets and  $f: X \times Y \to \mathbb{R}$  a function. Then the following are equivalent:

• The pair  $(\bar{x}, \bar{y})$  fulfills

$$f(x, \bar{y}) \le f(\bar{x}, \bar{y}) \le f(\bar{x}, y) \quad \forall x \in X, \ \forall y \in Y$$

The following conditions are satisfied:

(i)  $\inf_{y} \sup_{x} f(x, y) = \sup_{x} \inf_{y} f(x, y)$  (The conservative values agree)

(ii)  $\inf_{y} f(\bar{x}, y) = \sup_{x} \inf_{y} f(x, y)$  ( $\bar{x}$  is optimal for Pl 1) (iii)  $\sup_{x} f(x, \bar{y}) = \inf_{y} \sup_{x} f(x, y)$  ( $\bar{y}$  is optimal for Pl 2)

### Proof

**Proof** 1) implies 2). From 1) we get:

$$\inf_{y}\sup_{x}f(x,y)\leq \sup_{x}f(x,\bar{y})=f(\bar{x},\bar{y})=\inf_{y}f(\bar{x},y)\leq \sup_{x}\inf_{y}f(x,y)$$

Since  $v_1 \le v_2$  always holds, all above inequalities are equalities

Conversely, suppose 2) holds Then

$$\inf_{y} \sup_{x} f(x,y) \stackrel{(iii)}{=} \sup_{x} f(x,\bar{y}) \ge f(\bar{x},\bar{y}) \ge \inf_{y} f(\bar{x},y) \stackrel{(ii)}{=} \sup_{x} \inf_{y} f(x,y)$$

Because of (i), all inequalities are equalities and the proof is complete

## Finite games

The above theorem, when applied to finite games and mixed strategies, provides the next

### Corollary

The following are equivalent:

- $(\bar{x}, \bar{y})$  is a NE with  $\bar{x}^t P \bar{y} = v$
- the game has value v,  $\bar{x}$  is optimal for Pl1,  $\bar{y}$  is optimal for Pl2

# As a consequence of the theorem

Any  $(\bar{x}, \bar{y})$  Nash equilibrium of the zero sum game provides optimal strategies for the players

Any pair of optimal strategies for the players provides a Nash equilibrium for the zero sum game

Thus Nash theorem generalizes von Neumann's

### A comment

#### Remark

We defined two rationality paradigms for zero sum games

- common conservative value of the game, and optimal strategies for the players
- Nash equilibria

From the above result, they are the same rationality paradigm. Moreover, Von Neumann approach with conservatives values shows that, in the particular case of the zero sum game:

- Players can find their optimal behavior independently for the other players
- Any pair of optimal strategies provides a Nash equilibrium; this implies no need of coordination to reach an equilibrium
- Every Nash equilibrium provides the same utility (payoff) to the players: multiplicity of solutions does not create problems
- Nash equilibria are easy to be found in zero sum games

## Symmetric games

#### Definition

A square matrix  $n \times n$   $P = (p_{ij})$  is said to be antisymmetric provided  $p_{ii} = -p_{ii}$  for all i, j = 1, ..., n.

A (finite) zero sum game is said to be fair if the associated matrix is antisymmetric

In fair games there is no favorite player

### Fair outcome

### Proposition

If  $P = (p_{ij})$  is antisymmetric the value is 0 and  $\bar{x}$  is an optimal strategy for Pl1 if and only if it is optimal for Pl2

#### **Proof** Since

$$x^t P x = (x^t P x)^t = x^t P^t x = -x^t P x$$

then

$$\inf_{y} x^{t} P y \leq 0, \qquad \sup_{x} x^{t} P y \geq 0$$

 $v_1 \leq 0, v_2 \geq 0$ . Since they are equal, v = 0

If  $\bar{x}$  is optimal for the first player,  $\bar{x}^t P y \geq 0$  for all y and transposing

$$y^t P \bar{x} \leq 0$$
 for all  $y \in \Sigma_n$ ,

thus  $\bar{x}$  is optimal also for the second player, and conversely



# Finding optimal strategies in a fair game

Need to solve the system of inequalities

$$x_1 p_{11} + \dots + x_n p_{n1} \ge 0$$

$$\dots$$

$$x_1 p_{1j} + \dots + x_n p_{nj} \ge 0$$

$$\dots$$

$$x_1 p_{1m} + \dots + x_n p_{nn} \ge 0$$
(3)

with the extra conditions:

$$x_i \ge 0, \qquad \sum_{i=1}^n x_i = 1$$

## A proposed exercise

#### Example

Find the optimal strategies of the following fair game:

$$P = \left(\begin{array}{cccc} 0 & 3 & -2 & 0 \\ -3 & 0 & 0 & 4 \\ 2 & 0 & 0 & -3 \\ 0 & -4 & 3 & 0 \end{array}\right)$$