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General form

Definition

A two player zero sum game in strategic form is the triplet
(X ,Y , f : X × Y → R)

X is the strategy space of Pl1, Y the strategy space of Pl2, f (x , y) is
what Pl1 gets from Pl2, when they play x , y respectively. Thus f is the
utility function of Pl1, while for Pl2 the utility function g is g = −f .
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Finite game

In the finite case X = {1, 2, . . . , n}, Y = {1, 2, . . . ,m} the game is
described by a payoff matrix P

Example

P =

 4 3 1
7 5 8
8 2 0



Pl1 selects row i , Pl2 selects column j .
In general  p11 . . . p1m

. . . . . . . . .
pn1 . . . pnm


where pij is the payment of Pl2 to Pl1 when they play i , j respectively.
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How to solve them

Consider the game  4 3 1
7 5 8
8 2 0


minj p1j = 1, minj p2j = 5, minj p3j = 0 v1 = 5
maxi pi1 = 8, maxi pi2 = 5, maxi pi3 = 8, v2 = 5

Thus
Pl1 can guarantee herself to get at least

v1 = max
i

min
j

pij

Pl2 can guarantee himself to pay no more than

v2 = min
j

max
i

pij

In the example v1 = v2 = 5 and
Rational outcome 5.Rational behavior (̄ı = 2,̄ = 2)

v1 conservative value of Player 1 because she guarantee to get at
least v1

v2 conservative value of Player 2 because he guarantee to pay no
more than v2
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Alternative idea of solution

Suppose

v1 = v2 := v ,
ı̄ a row such that p̄ıj ≥ v for all j
(̄) a column such that pi ̄ ≤ v for all i

Then p̄ı̄ = v and p̄ı̄ = v is the rational outcome of the game

Remark

ı̄ is an optimal strategy for Pl1, because she cannot get more than v,
since v = v2 is the conservative value of the second player

̄ is an optimal strategy for Pl2, because he cannot pay less than v,
since v = v1 is the conservative value of the first player

Remark

Observe ı̄ maximizes the function α(i) = minj pij , ̄ minimizes the
function β(j) = maxi pij
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For arbitrary games

(X ,Y , f : X × Y → R)

The players can guarantee to themselves (almost):

Pl1: v1 = supx infy f (x , y)

PL2: v2 = infy supx f (x , y)

v1, v2 are the conservative values of the players

If v1 = v2, we set v = v1 = v2 and we say that the game has value v
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Optimality

Suppose

1 v1 = v2 := v
2 there exists strategy x̄ such that f (x̄ , y) ≥ v for all y ∈ Y
3 there exists strategy ȳ such that f (x , ȳ) ≤ v for all x ∈ X

Then

v is the rational outcome of the game

x̄ is an optimal strategy for Pl1

ȳ is an optimal strategy for Pl2

Observe

x̄ is optimal for Pl1 since it maximizes the function
α(x) = infy f (x , y)

x̄ is optimal for Pl2 since it minimizes the function
β(y) = supx f (x , y)

α(x) is the value of the optimal choice of Pl2 if he knows that Pl1 plays x ;

symmetrically for β(y)
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v1 ≤ v2

Proposition

Let X ,Y be nonempty sets and let f : X × Y → R be an arbitrary real
valued function. Then

sup
x

inf
y
f (x , y) ≤ inf

y
sup
x

f (x , y)

Proof Observe that, for all x , y ,

inf
y

f (x , y) ≤ f (x , y) ≤ sup
x

f (x , y)

Thus
α(x) = inf

y
f (x , y) ≤ sup

x
f (x , y) = β(y)

Since for all x ∈ X and y ∈ Y it holds

α(x) ≤ β(y)

it follows
sup
x
α(x) ≤ inf

y
β(y)

As a consequence, in every game v1 ≤ v2
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Equality need not hold

Example

P =

 0 1 −1
−1 0 1
1 −1 0

 .

v1 = −1, v2 = 1

Nothing unexpected. . .
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Case v1 < v2

Finite case: mixed strategies. Game: n ×m matrix P.

Strategy space for Pl1:

Σn = {x = (x1, . . . , xn) : xi ≥ 0,
n∑

i=1

xi = 1}

Strategy space for Pl2:

Σm = {y = (y1, . . . , ym) : yj ≥ 0,
m∑
j=1

yj = 1}

f (x , y) =
∑

i=1,...,n,j=1,...,m

xiyjpij = x tPy

The mixed extension of the initial game P: (Σn,Σm, f (x , y) = x tPy)

Remark

Σn is called the fundamental simplex in Rn: it is the smallest convex set containing
the extreme points (1, 0, . . . , 0), . . . , (0, . . . , 1). The extreme points of the simplex
correspond to pure strategies.
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To prove existence of a rational outcome

To have existence of a rational outcome for the game, need to prove:

1 v1 = v2 (the two conservative values agree)

2 there exists x̄ fulfilling

v1 = inf
y
f (x̄ , y)

(x̄ is optimal for Pl1)

3 there exists ȳ fulfilling

v2 = sup
x

f (x , ȳ)

(ȳ is optimal for Pl2)

In the finite case optimal x̄ and ȳ always exist; thus existence is
equivalent to coincidence of the conservative values
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The von Neumann theorem

Theorem

A two player, finite, zero sum game as described by a payoff matrix P has
a rational outcome
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Finding optimal strategies:Pl1

Pl1 must choose a probability distribution Σn 3 x = (x1, . . . , xn):

x1p11 + · · ·+ xnpn1 ≥ v
. . .
x1p1j + · · ·+ xnpnj ≥ v
. . .
x1p1m + · · ·+ xnpnm ≥ v

where v must be as large as possible

x1p1j + · · ·+ xnpnj is the expected value of Pl1 if Pl2 plays column j . Thus the above
inequalities require that Pl1 gets at least v against every pure strategy of PL2. This is
enough to guarantee that she gets at least v against every mixed strategy of Pl2
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Finding optimal strategies:Pl2

Pl2 must choose a probability distribution Σm 3 y = (y1, . . . , ym):

y1p11 + · · ·+ ymp1m ≤ w
. . .
y1pi1 + · · ·+ ympim ≤ w
. . .
y1pn1 + · · ·+ ympnm ≤ w

where w must be as small as possible

y1pi1 + · · ·+ ympim is the expected value of Pl2 if Pl1 plays row i . Thus the above
inequalities require that Pl2 pays no more than v against every pure strategy of PL1.
This is enough to guarantee that he pays no more than v against every mixed strategy
of Pl11
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In matrix form

Pl1:

 maxx,v v :
P tx ≥ v1m

x ≥ 0 〈1, x〉 = 1
(1)

Pl2:

 miny ,w w :
Py ≤ w1n

y ≥ 0 〈1, y〉 = 1
(2)

(1) and (2) are dual problems, they are both feasible
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Dual linear programs: Form 1

Definition

The following two linear programs are said to be in duality

(P)

 min c tx
Ax ≥ b
x ≥ 0

(D)

 max bty
AT y ≤ c
y ≥ 0

The min problem is called primal problem and the max is called dual
problem.
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Dual linear programs: Form 2

Definition

The following two linear programs are said to be in duality

(P)

{
min c tx
Ax ≥ b

(D)

 max bty
AT y = c
y ≥ 0

There is a standard way to pass from the first form of (P) (where non negativity

constraint are present) to the second form of (P), and conversely; dualizing the

problems leads to equivalent form of the dual problems.
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Feasibility of dual programs

Easy examples show that, given two problems in duality,

They can be both infeasible

Only one can be feasible

Both can be feasible
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Example 1

Consider  min x1 + x2

x1 + 2x2 ≥ 1
x1 ≥ 0, x2 ≥ 0

Its dual is 
max y
y ≤ 1
2y ≤ 1
y ≥ 0

Since (x1, x2) = (0, 1
2 ) fulfills the constraints of the primal problem and

y = 1
2 fulfills the constraints of the dual problem, they are both feasible.
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Examples 2,3

Consider 
min x1 − x2

x1 + x2 ≥ 2
−x1 − x2 ≥ −1
x1 ≥ 0, x2 ≥ 0

Its dual is 
max 2y1 − y2

y1 − y2 ≤ 1
y1 − y2 ≤ −1
y ≥ 0

The primal is infeasible while (0, 1) is feasible in the dual.

Taking A = 0, b = (1, . . . , 1) and c = (−1, . . . ,−1) shows that both
problems can be infeasible.
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Weak duality theorem

Theorem

Let v be the value of the primal min problem and V the value of the dual
max problem. Then

v ≥ V

Proof
Form 1:

c tx ≥ (Aty)tx = y tAx ≥ y tb = bty

Since this is true for all admissible x and y the result follows.

Form 2:
c tx = (Aty)tx = y tAx ≥ y tb = bty
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Strong duality theorem

Theorem

If the primal and dual problems are feasible, then both problems have optimal
solutions x̄ , ȳ and the optimal values coincide

v = ct x̄ = bt ȳ = V .

In this case we say that there is no duality gap.

If the primal is feasible and the dual is infeasible, then v = V = −∞
If the primal is infeasible and the dual is feasible, then v = V = +∞
If both the primal and the dual are infeasible, then v =∞ > V = −∞

Corollary

If one problem is feasible and has an optimal solution, then also the dual problem is
feasible and has solutions. Moreover there is no duality gap.

Roberto Lucchetti Zero sum games



24/36

Zero sum games
A three slides course in Linear Programming

Back to zero sum games

Complementarity conditions: Form 1

(P)

{
min c tx
Ax ≥ b, x ≥ 0

; (D)

{
max bty
AT y ≤ c , y ≥ 0

Theorem

Let x̄ , ȳ be primal and dual feasible. Then x̄ , ȳ are simultaneously
optimal iff

(CC )

{
(∀i = 1, . . . , n) x̄i > 0⇒

∑m
j=1 aji ȳj = ci

(∀j = 1, . . . ,m) ȳj > 0⇒
∑n

i=1 aij x̄i = bj

Proof Since c tx ≥ y tAx ≥ bty it follows that x̄ , ȳ are optimal iff

c t x̄ t = ȳ tAx̄ = bt ȳ

This is equivalent to

x̄ t(At ȳ − c) = 0 and ȳ t(Ax̄ − b) = 0

Since x̄ , ȳ ≥ 0 and Ax̄ ≥ b,At ȳ ≤ c the latter are equivalent to (CC).
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An example

Consider 
min x1 + x2 :
2x1 + x2 ≥ 2
x1 + 2x2 ≤ 2
x1 ≥ 0, x2 ≥ 0

Its dual is 
max 2y1 − 2y2 :
2y1 − y2 ≤ 1
y1 − 2y2 ≤ 1
y1 ≥ 0, y2 ≥ 0

We have v = 1, (x̄1, x̄2) = (1, 0) ; V = 1, (ȳ1, ȳ2) = ( 1
2 , 0).

Check of the complementarity conditions:

ȳ1 =
1

2
> 0 =⇒ 2x̄1 + x̄2 = 2, x̄1 = 1 > 0 =⇒ 2y1 − y2 = 1
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Equivalent formulation

Back to a zero sum game described by a payoff matrix P. We can assume, w.l.o.g.,
that pij > 0 for all i , j . This implies v > 0

Set αi = xi
v

. Then
∑

xi = 1 becomes
∑
αi = 1

v
and maximizing v is equivalent to

minimizing
∑
αi . Set βj =

yj
v

and do the same as before.

Consider the two problems in duality

(P)

 min c tα
Aα ≥ b
α ≥ 0

(D)

 max btβ
Atβ ≤ c
β ≥ 0

where c t = (1, . . . , 1), bt = (1, . . . , 1), A = P t .
Denote by v the common value of the two problems. We have

x is optimal strategy for Pl1 if and only if x = vα for some α
optimal solution of (P)

y is optimal strategy for Pl1 if and only if y = vβ for some β
optimal solution of (D)
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Complementarity conditions in zero sum games

Write again the complementarity conditions for the above problems,
being x ,y strategies for the two players:

(CC )

{
(∀i = 1, . . . , n) x̄i > 0⇒

∑m
j=1 pij ȳj = v

(∀j = 1, . . . ,m) ȳj > 0⇒
∑n

i=1 pji x̄i = v

Interpretation:

Since ȳ is optimal for Pl2, he is able to pay no more than v against
all strategies of the first player

If x̄i > 0 then Pl1 plays row i with positive probability

The complementarity condition shows then that the row i must be
optimal for Pl1 (since she gets less or equal to v by playing the other
rows).
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Summarizing

A finite zero sum game has always rational outcome in mixed
strategies

The set of optimal strategies for the players is a nonempty closed
convex set

The outcome, at each pair of optimal strategies, is the common
conservative value v of the players
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But what about the Nash equilibria of a zero sum game?

Theorem

Let X , Y be (nonempty) sets and f : X × Y → R a function. Then the
following are equivalent:

1 The pair (x̄ , ȳ) fulfills

f (x , ȳ) ≤ f (x̄ , ȳ) ≤ f (x̄ , y) ∀x ∈ X , ∀y ∈ Y

2 The following conditions are satisfied:
(i) infy supx f (x , y) = supx infy f (x , y)
(ii) infy f (x̄ , y) = supx infy f (x , y)
(iii) supx f (x , ȳ) = infy supx f (x , y)
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Proof

Proof 1) implies 2). From 1) we get:

inf
y

sup
x

f (x , y) ≤ sup
x

f (x , ȳ) = f (x̄ , ȳ) = inf
y
f (x̄ , y) ≤ sup

x
inf
y
f (x , y)

Since v1 ≤ v2 always holds, all above inequalities are equalities

Conversely, suppose 2) holds Then

inf
y

sup
x

f (x , y)
(iii)
= sup

x
f (x , ȳ) ≥ f (x̄ , ȳ) ≥ inf

y
f (x̄ , y)

(ii)
= sup

x
inf
y
f (x , y)

Because of (i), all inequalities are equalities and the proof is complete
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As a consequence of the theorem

Any (x̄ , ȳ) Nash equilibrium of the zero sum game provides optimal
strategies for the players

Any pair of optimal strategies for the players provides a Nash equilibrium
for the zero sum game

Thus Nash theorem generalizes von Neumann’s
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A comment

Remark

Von Neumann approach with conservatives values shows that, in the
particular case of the zero sum game:

Players can find their optimal behavior independently for the other
players

Any pair of optimal strategies provides a Nash equilibrium; this
implies no need of coordination to reach an equilibrium

Every Nash equilibrium provides the same utility (payoff) to the
players: multiplicity of solutions does not create problems

Nash equilibria are easy to be found in zero sum games
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Symmetric games

Definition

A square matrix n × n P = (pij) is said to be antisymmetric provided
pij = −pji for all i , j = 1, . . . , n.
A (finite) zero sum game is said to be fair if the associated matrix is
antisymmetric

In fair games there is no favorite player
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Fair outcome

Proposition

If P = (pij) is antisymmetric the value is 0 and x̄ is an optimal strategy
for Pl1 if and only if it is optimal for Pl2

Proof Since
x tPx = (x tPx)t = x tP tx = −x tPx

f (x , x) = 0 for all x thus v1 ≤ 0, v2 ≥ 0

Then v = 0

If x̄ is optimal for the first player, x̄ tPy ≥ 0 for all y and transposing

y tPx̄ ≤ 0 for all y ∈ Σn,

thus x̄ is optimal also for the second player, and conversely
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Finding optimal strategies in a fair game

Need to solve the system of inequalities

x1p11 + · · ·+ xnpn1 ≥ 0
. . .
x1p1j + · · ·+ xnpnj ≥ 0
. . .
x1p1m + · · ·+ xnpnm ≥ 0

(3)

with the extra conditions:

xi ≥ 0,
n∑

i=1

xi = 1
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A proposed exercise

Example

Find the optimal strategies of the following fair game:

P =


0 3 −2 0
−3 0 0 4
2 0 0 −3
0 −4 3 0


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