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Zero sum games

General form

An interesting case is when the game is two player, zero sum

Definition

A two player zero sum game in strategic form is the triplet
(X ,Y , f : X × Y → R)

f (x , y) is what Pl1 gets from Pl2, when they play x , y respectively. Thus
g = −f

Roberto Lucchetti Zero sum games



Zero sum games

Finite game

In the finite case X = {1, 2, . . . , n}, Y = {1, 2, . . . ,m} the game is
described by a payoff matrix P

Example

P =

 4 3 1
7 5 8
8 2 0



Pl1 selects row i , Pl2 selects column j .
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Zero sum games

A different approach to solve them

 4 3 1
7 5 8
8 2 0

 .

Pl1 can guarantee herself to get at least

v1 = max
i

min
j

pij

Pl2 can guarantee himself to pay no more than

v2 = min
j

max
i

pij

minj p1j = 1, minj p2j = 5, minj p3j = 0 v1 = 5
mini pi1 = 8, minj pi2 = 5, minj pi3 = 8, v2 = 5

Rational outcome 5.Rational behavior (̄ı = 2,̄ = 2).
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Alternative idea of solution

Suppose v1 = v2 := v , denote by ı̄ (̄) the row (column) such that
p̄ıj ≥ v for all j ( pi ̄ ≤ v for all i).

Then p̄ı̄ = v and p̄ı̄ = v is the rational outcome of the game

Remark

ı̄ (̄) is an optimal strategy for Pl1 (for Pl2), because he cannot get more
(cannot pay less) than v (since v is the conservative value of the second
(first) player)
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For arbitrary games

(X ,Y , f : X × Y → R)

The players can guarantee to themselves (almost):

Pl1: v1 = supx infy f (x , y)

PL2: v2 = infy supx f (x , y)

v1, v2 are the conservative values of the players
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Optimality

Suppose v1 = v2 := v , strategies x̄ and ȳ exist such that

f (x̄ , y) ≥ v , f (x , ȳ) ≤ v

for all y and for all x

Then f (x̄ , ȳ) = v is the rational outcome of the game

x̄ is an optimal strategy for Pl1, ȳ is an optimal strategy for Pl2
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v1 ≤ v2

Proposition

Let X ,Y be any sets and let f : X × Y → R be an arbitrary function.
Then

sup
x

inf
y
f (x , y) ≤ inf

y
sup
x

f (x , y)

Proof Observe that, for all x , y ,

inf
y
f (x , y) ≤ f (x , y) ≤ sup

x
f (x , y)

Thus
inf
y
f (x , y) ≤ sup

x
f (x , y)

Since the left hand side of the above inequality does not depend on y
and the right hand side on x , the thesis follows

In every game v1 ≤ v2, as expected
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Equality need not hold

Example

P =

 0 1 −1
−1 0 1
1 −1 0

 .

v1 = −1, v2 = 1

Nothing unexpected. . .
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Case v1 < v2

Finite case: mixed strategies. Game: n ×m matrix P.

Strategy space for Pl1:

Σn = {x = (x1, . . . , xn) : xi ≥ 0,
n∑

i=1

xi = 1}

Strategy space for Pl2:

Σm = {y = (y1, . . . , ym) : yj ≥ 0,
m∑
j=1

yj = 1}

f (x , y) =
∑

i=1,...,n,j=1,...,m

xiyjpij = x tPy

The mixed extension of the initial game P: (Σn,Σm, f (x , y) = x tPy)
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To prove existence of a rational outcome

What must be proved, to have existence of a rational outcome:

1) v1 = v2

2) there exists x̄ fulfilling

v1 = sup
x

inf
y
f (x , y) = inf

y
f (x̄ , y)

3) there exists ȳ fulfilling

v2 = inf
y

sup
x

f (x , y) = sup
x

f (x , ȳ)

In the finite case x̄ and ȳ fulfilling 1) and 2) always exist; thus existence
is equivalent to 1)

Roberto Lucchetti Zero sum games



Zero sum games

The von Neumann theorem

Theorem

A two player, finite, zero sum game as described by a payoff matrix P has
a rational outcome.
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Finding optimal strategies:Pl1

Pl1 must choose a probability distribution Σn 3 x = (x1, . . . , xn):

x1p11 + · · ·+ xnpn1 ≥ v
. . .
x1p1j + · · ·+ xnpnj ≥ v
. . .
x1p1m + · · ·+ xnpnm ≥ v

where v must be as large as possible
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Finding optimal strategies:Pl2

Pl2 must choose a probability distribution Σm 3 y = (y1, . . . , ym):

y1p11 + · · ·+ ymp1m ≤ w
. . .
y1pi1 + · · ·+ ympim ≤ w
. . .
y1pn1 + · · ·+ ympnm ≤ w

where w must be as small as possible
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In matrix form

Pl1:

 maxx,v v :
P tx ≥ v1m

x ≥ 0 〈1, x〉 = 1
(1)

Pl2:

 miny ,w w :
Py ≤ w1n

y ≥ 0 〈1, y〉 = 1
(2)

Easy to see that these problems are in duality, they are feasible, and the
two values agree.
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Summarizing

A finite zero sum game has always rational outcome in mixed strategies

The set of optimal strategies for the players is a nonempty closed convex
set, the smallest convex set containing a finite number of points, called
the extreme points of the set

The outcome, at each pair of optimal strategies, is the common
conservative value v of the players
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But what about the Nash equilibria of a zero sum game?

Theorem

Let X , Y be (nonempty) sets and f : X × Y → R a function. Then the
following are equivalent:

1) The pair (x̄ , ȳ) fulfills

f (x , ȳ) ≤ f (x̄ , ȳ) ≤ f (x̄ , y) ∀x ∈ X , ∀y ∈ Y

2) The following conditions are satisfied:
(i) infy supx f (x , y) = supx infy f (x , y)
(ii) infy f (x̄ , y) = supx infy f (x , y)
(iii) supx f (x , ȳ) = infy supx f (x , y)
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Proof

Proof 1) implies 2). From 1) we get:

inf
y

sup
x

f (x , y) ≤ sup
x

f (x , ȳ) = f (x̄ , ȳ) = inf
y
f (x̄ , y) ≤ sup

x
inf
y
f (x , y)

Since v1 ≤ v2 always holds, all above inequalities are equalities

Conversely, suppose 2) holds Then

inf
y

sup
x

f (x , y)
(iii)
= sup

x
f (x , ȳ) ≥ f (x̄ , ȳ) ≥ inf

y
f (x̄ , y)

(ii)
= sup

x
inf
y
f (x , y)

Because of (i), all inequalities are equalities and the proof is complete
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As a consequence of the theorem

Any (x̄ , ȳ) Nash equilibrium of the zero sum game provides optimal
strategies for the players

Any pair of optimal strategies for the players provides a Nash equilibrium
for the zero sum game

Thus Nash theorem generalizes von Neumann’s
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A comment

Remark

Von Neumann approach with conservatives values shows that, in the
particular case of the zero sum game:

1) Players can find their optimal behavior independently for the other
players

2) Any pair of optimal strategies provides a Nash equilibrium; this
implies no need of coordination to reach an equilibrium

3) Every Nash equilibrium provides the same utility (payoff) to the
players: multiplicity of solutions does not create problems

4) Nash equilibria are easy to be found in zero sum games
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Symmetric games

Definition

A square matrix n × n P = (pij) is said to be antisymmetric provided
pij = −pji for all i , j = 1, . . . , n. A (finite) zero sum game is said to be
fair if the associated matrix is antisymmetric

In fair games there is no favorite player
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Fair outcome

Proposition

If P = (pij) is antisymmetric the value is 0 and x̄ is an optimal strategy
for Pl1 if and only if it is optimal for Pl2

Proof Since
x tPx = (x tPx)t = x tP tx = −x tPx ,

f (x , x) = 0 for all x thus v1 ≤ 0, v2 ≥ 0

Then v = 0.

If x̄ is optimal for the first player, x̄ tPy ≥ 0 for all y

Thus y tPx̄ ≤ 0 for all y ∈ Σn, and

x̄ is optimal for the second player
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Finding optimal strategies in a fair game

Need to solve the system of inequalities

x1p11 + · · ·+ xnpn1 ≥ 0
. . .
x1p1j + · · ·+ xnpnj ≥ 0
. . .
x1p1m + · · ·+ xnpnm ≥ 0

with the extra conditions:

xi ≥ 0,
n∑

i=1

xi = 1
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A proposed exercise

Example

Find the optimal strategies of the following fair game:

P =


0 3 −2 0
−3 0 0 4
2 0 0 −3
0 −4 3 0
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Toward Indifference Principle

In the system (with v unknown!)

x1p11 + · · ·+ xnpn1 ≥ v
. . .
x1p1j + · · ·+ xnpnj ≥ v
. . .
x1p1m + · · ·+ xnpnm ≥ v

when a strict inequality is possible?

Suppose x̄ is optimal for Pl1 and

x̄1p1j + · · ·+ x̄npnj > v .

Then Pl2 never plays column j .

Otherwise Pl1 would get more than v playing x̄ .
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The Principle

There is a nonempty set of indices J1 = {j1, . . . , jk} such that

x1p1j1 + · · ·+ xnpnj1 = x1p1j2 + · · ·+ xnpnj2 = . . . = x1p1jk + · · ·+ xnpnjk

and

x1p1j1 + · · ·+ xnpnj1>x1p1j + · · ·+ xnpnj

for all j /∈ J1

J1 is the set of columns played with positive probability by Pl2 at some
optimal strategy

Also true: if j /∈ J1 there exists an optimal strategy for Pl1 providing her
a payoff > v against column j
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