Zero sum games

Roberto Lucchetti

Politecnico di Milano

An interesting case is when the game is two player, zero sum

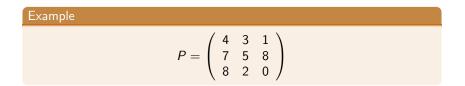
Definition

A two player zero sum game in strategic form is the triplet $(X, Y, f : X \times Y \rightarrow \mathbb{R})$

f(x, y) is what Pl1 gets from Pl2, when they play x, y respectively. Thus g = -f

Finite game

In the finite case $X=\{1,2,\ldots,n\},\;Y=\{1,2,\ldots,m\}$ the game is described by a payoff matrix P



Pl1 selects row i, Pl2 selects column j.

A different approach to solve them

$$\left(\begin{array}{rrrr}
4 & 3 & 1 \\
7 & 5 & 8 \\
8 & 2 & 0
\end{array}\right)$$

Pl1 can guarantee herself to get at least

 $v_1 = \max_i \min_j p_{ij}$

Pl2 can guarantee himself to pay no more than

 $v_2 = \min_j \max_i p_{ij}$

 $\min_{j} p_{1j} = 1, \ \min_{j} p_{2j} = 5, \ \min_{j} p_{3j} = 0 \quad v_1 = 5 \\ \min_{i} p_{i1} = 8, \ \min_{j} p_{i2} = 5, \ \min_{j} p_{i3} = 8, \quad v_2 = 5$

Rational outcome 5. Rational behavior ($\bar{i} = 2, \bar{j} = 2$).

Alternative idea of solution

Suppose $v_1 = v_2 := v$, denote by $\overline{i}(\overline{j})$ the row (column) such that $p_{\overline{ij}} \ge v$ for all j ($p_{\overline{ij}} \le v$ for all i).

Then $p_{\overline{i}\overline{i}} = v$ and $p_{\overline{i}\overline{i}} = v$ is the rational outcome of the game

Remark

 $\bar{\iota}$ (J) is an optimal strategy for Pl1 (for Pl2), because he cannot get more (cannot pay less) than ν (since ν is the conservative value of the second (first) player)

$$(X, Y, f: X \times Y \to \mathbb{R})$$

The players can guarantee to themselves (almost):

Pl1: $v_1 = \sup_x \inf_y f(x, y)$

PL2: $v_2 = \inf_y \sup_x f(x, y)$

 v_1 , v_2 are the conservative values of the players

Suppose $v_1=v_2:=v$, strategies $ar{x}$ and $ar{y}$ exist such that $f(ar{x},y)\geq v, \quad f(x,ar{y})\leq v$

for all y and for all x

Then $f(\bar{x}, \bar{y}) = v$ is the rational outcome of the game

 \bar{x} is an optimal strategy for Pl1, \bar{y} is an optimal strategy for Pl2

$v_1 \leq v_2$

Proposition

Let X,Y be any sets and let $f:X\times Y\to \mathbb{R}$ be an arbitrary function. Then

$$\sup_{x} \inf_{y} f(x, y) \leq \inf_{y} \sup_{x} f(x, y)$$

Proof Observe that, for all x, y,

$$\inf_{y} f(x,y) \le f(x,y) \le \sup_{x} f(x,y)$$

Thus

$$\inf_{y} f(x,y) \leq \sup_{x} f(x,y)$$

Since the left hand side of the above inequality does not depend on y and the right hand side on x, the thesis follows

In every game $v_1 \leq v_2$, as expected

Equality need not hold

Example

$$P = \left(\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right)$$

 $v_1 = -1, v_2 = 1$

Nothing unexpected...

Case $v_1 < v_2$

Finite case: mixed strategies. Game: $n \times m$ matrix P.

Strategy space for PI1:

$$\Sigma_n = \{x = (x_1, \dots, x_n) : x_i \ge 0, \sum_{i=1}^n x_i = 1\}$$

Strategy space for PI2:

$$\Sigma_m = \{y = (y_1, \dots, y_m) : y_j \ge 0, \sum_{j=1}^m y_j = 1\}$$

$$f(x,y) = \sum_{i=1,\ldots,n,j=1,\ldots,m} x_i y_j p_{ij} = x^t P y$$

The mixed extension of the initial game P: $(\Sigma_n, \Sigma_m, f(x, y) = x^t P y)$

To prove existence of a rational outcome

What must be proved, to have existence of a rational outcome:

- 1) $v_1 = v_2$
- 2) there exists \bar{x} fulfilling

$$v_1 = \sup_{x} \inf_{y} f(x, y) = \inf_{y} f(\bar{x}, y)$$

3) there exists \bar{y} fulfilling

$$v_2 = \inf_y \sup_x f(x, y) = \sup_x f(x, \bar{y})$$

In the finite case \bar{x} and \bar{y} fulfilling 1) and 2) always exist; thus existence is equivalent to 1)

The von Neumann theorem

Theorem

A two player, finite, zero sum game as described by a payoff matrix P has a rational outcome.

Finding optimal strategies:Pl1

Pl1 must choose a probability distribution $\Sigma_n \ni x = (x_1, \dots, x_n)$:

$$x_1p_{11} + \dots + x_np_{n1} \ge v$$

...
$$x_1p_{1j} + \dots + x_np_{nj} \ge v$$

...
$$x_1p_{1m} + \dots + x_np_{nm} \ge v$$

where v must be as large as possible

Finding optimal strategies:PI2

Pl2 must choose a probability distribution $\Sigma_m \ni y = (y_1, \dots, y_m)$:

$$y_1p_{11} + \dots + y_mp_{1m} \le w$$

...
$$y_1p_{i1} + \dots + y_mp_{im} \le w$$

...
$$y_1p_{n1} + \dots + y_mp_{nm} \le w$$

where w must be as small as possible

In matrix form

PI1:

$$\begin{array}{l} \max_{x,v} v : \\ P^t x \geq v \mathbf{1}_m \\ x \geq 0 \quad \langle \mathbf{1}, x \rangle = 1 \end{array}$$

PI2:

$$\begin{cases} \min_{y,w} w :\\ Py \le w 1_n\\ y \ge 0 \quad \langle 1, y \rangle = 1 \end{cases}$$

$$(2)$$

Easy to see that these problems are in duality, they are feasible, and the two values agree.

A finite zero sum game has always rational outcome in mixed strategies

The set of optimal strategies for the players is a nonempty closed convex set, the smallest convex set containing a finite number of points, called the extreme points of the set

The outcome, at each pair of optimal strategies, is the common conservative value v of the players

But what about the Nash equilibria of a zero sum game?

Theorem

Let X, Y be (nonempty) sets and $f : X \times Y \to \mathbb{R}$ a function. Then the following are equivalent:

1) The pair (\bar{x}, \bar{y}) fulfills

$$f(x, \bar{y}) \leq f(\bar{x}, \bar{y}) \leq f(\bar{x}, y) \quad \forall x \in X, \ \forall y \in Y$$

2) The following conditions are satisfied: (i) $\inf_{y} \sup_{x} f(x, y) = \sup_{x} \inf_{y} f(x, y)$ (ii) $\inf_{y} f(\bar{x}, y) = \sup_{x} \inf_{y} f(x, y)$ (iii) $\sup_{x} f(x, \bar{y}) = \inf_{y} \sup_{x} f(x, y)$ **Proof** 1) implies 2). From 1) we get:

$$\inf_{y} \sup_{x} f(x, y) \leq \sup_{x} f(x, \overline{y}) = f(\overline{x}, \overline{y}) = \inf_{y} f(\overline{x}, y) \leq \sup_{x} \inf_{y} f(x, y)$$

Since $v_1 \leq v_2$ always holds, all above inequalities are equalities

Conversely, suppose 2) holds Then

$$\inf_{y} \sup_{x} f(x, y) \stackrel{(iii)}{=} \sup_{x} f(x, \overline{y}) \ge f(\overline{x}, \overline{y}) \ge \inf_{y} f(\overline{x}, y) \stackrel{(ii)}{=} \sup_{x} \inf_{y} f(x, y)$$

Because of (i), all inequalities are equalities and the proof is complete

As a consequence of the theorem

Any (\bar{x}, \bar{y}) Nash equilibrium of the zero sum game provides optimal strategies for the players

Any pair of optimal strategies for the players provides a Nash equilibrium for the zero sum game

Thus Nash theorem generalizes von Neumann's

Remark

Von Neumann approach with conservatives values shows that, in the particular case of the zero sum game:

- 1) Players can find their optimal behavior independently for the other players
- 2) Any pair of optimal strategies provides a Nash equilibrium; this implies no need of coordination to reach an equilibrium
- 3) Every Nash equilibrium provides the same utility (payoff) to the players: multiplicity of solutions does not create problems
- 4) Nash equilibria are easy to be found in zero sum games

Symmetric games

Definition

A square matrix $n \times n P = (p_{ij})$ is said to be antisymmetric provided $p_{ij} = -p_{ji}$ for all i, j = 1, ..., n. A (finite) zero sum game is said to be fair if the associated matrix is antisymmetric

In fair games there is no favorite player

Fair outcome

If $P = (p_{ii})$ is antisymmetric the value is 0 and \bar{x} is an optimal strategy for PI1 if and only if it is optimal for PI2

Proof Since

$$x^t P x = (x^t P x)^t = x^t P^t x = -x^t P x,$$

$$f(x,x) = 0$$
 for all x thus $v_1 \leq 0, v_2 \geq 0$

Then v = 0.

If \bar{x} is optimal for the first player, $\bar{x}^t P y \ge 0$ for all y

Thus $y^t P \bar{x} < 0$ for all $y \in \Sigma_n$, and

 \bar{x} is optimal for the second player

Finding optimal strategies in a fair game

Need to solve the system of inequalities

$$x_1p_{11} + \dots + x_np_{n1} \ge 0$$

...
$$x_1p_{1j} + \dots + x_np_{nj} \ge 0$$

...
$$x_1p_{1m} + \dots + x_np_{nm} \ge 0$$

with the extra conditions:

$$x_i \ge 0, \qquad \sum_{i=1}^n x_i = 1$$

A proposed exercise

Example

Find the optimal strategies of the following fair game:

Toward Indifference Principle

In the system (with v unknown!)

$$x_1p_{11} + \dots + x_np_{n1} \ge v$$

...
$$x_1p_{1j} + \dots + x_np_{nj} \ge v$$

...
$$x_1p_{1m} + \dots + x_np_{nm} \ge v$$

when a strict inequality is possible?

Suppose \bar{x} is optimal for Pl1 and

 $\bar{x}_1 p_{1j} + \cdots + \bar{x}_n p_{nj} > v.$

Then Pl2 never plays column *j*.

Otherwise Pl1 would get more than v playing \bar{x} .

The Principle

There is a nonempty set of indices $J_1 = \{j_1, \ldots, j_k\}$ such that

$$x_1p_{1j_1} + \dots + x_np_{nj_1} = x_1p_{1j_2} + \dots + x_np_{nj_2} = \dots = x_1p_{1j_k} + \dots + x_np_{nj_k}$$

and

$$x_1p_{1j_1}+\cdots+x_np_{nj_1}{>}x_1p_{1j}+\cdots+x_np_{nj}$$
 for all $j\notin J_1$

 $J_{\rm 1}$ is the set of columns played with positive probability by Pl2 at some optimal strategy

Also true: if $j \notin J_1$ there exists an optimal strategy for Pl1 providing her a payoff > v against column j