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Zero sum games

General form

An interesting case is when the game is two player, zero sum.

Definition

A two player zero sum game in strategic form is the triplet
(X ,Y , f : X × Y → R)

f (x , y) is what Pl1 gets from Pl2, when they play x , y respectively. Thus
g = −f .
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Finite game

In the finite case X = {1, 2, . . . , n}, Y = {1, 2, . . . ,m} the game is
described by a payoff matrix P.

Example

P =

 4 3 1
7 5 8
8 2 0

 .

Pl1 selects row i , Pl2 selects column j .
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A different approach to solve them

 4 3 1
7 5 8
8 2 0

 .

Pl1 can guarantee herself

v1 = max
i

min
j

pij

Pl2 can guarantee himself

v2 = min
j

max
i

pij

minj p1j = 1, minj p2j = 5, minj p3j = 0 v1 = 5

mini pi1 = 8, minj pi2 = 5, minj pi3 = 8, v2 = 5
Rational outcome 5.Rational behavior (ī = 2,j̄ = 2).
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Alternative idea of solution

Suppose v1 = v2 := v , denote by ı̄ (̄) the row (column) such that
p̄ıj ≥ v for all j ( pi ̄ ≤ v for all i).

Then p̄ı̄ = v and p̄ı̄ = v is the rational outcome of the game.

ı̄ is an optimal strategy for Pl1, ̄ is an optimal strategy for Pl2.
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Generalizing

Consider the game (X ,Y , f : X × Y → R).
The players can guarantee to themselves (almost):

Pl1: v1 = supx infy f (x , y)

PL2: v2 = infy supx f (x , y)

v1, v2 are the conservative values of the players
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Optimality

Suppose v1 = v2 := v , strategies x̄ and ȳ exist such that

f (x̄ , y) ≥ v , f (x , ȳ) ≤ v

for all y and for all x .

Then f (x̄ , ȳ) = v is the rational outcome of the game.

x̄ is an optimal strategy for Pl1, ȳ is an optimal strategy for Pl2.
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v1 ≤ v2.

Proposition

Let X ,Y be any sets and let f : X × Y → R be an arbitrary function.
Then

sup
x

inf
y
f (x , y) ≤ inf

y
sup
x

f (x , y).

Proof Observe that, for all x , y ,

inf
y
f (x , y) ≤ f (x , y) ≤ sup

x
f (x , y).

Thus
inf
y
f (x , y) ≤ sup

x
f (x , y)

Since the left hand side of the above inequality does not depend on y
and the right hand side on x , the thesis follows.

i.e. in every game v1 ≤ v2.
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Another example

Example

P =

 0 1 −1
−1 0 1
1 −1 0

 .

v1 = −1, v2 = 1

Nothing unexpected. . .
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Case v1 < v2

Finite case: mixed strategies. Game: n ×m matrix P.

Strategy space for Pl1:

Σn = {x = (x1, . . . , xn) : xi ≥ 0,
n∑

i=1

xi = 1}

Strategy space for Pl2:

Σm = {y = (y1, . . . , ym) : yj ≥ 0,
m∑
j=1

yj = 1}

f (x , y) =
∑

i=1,...,n,j=1,...,m

xiyjpij = 〈x ,Py〉 = 〈P tx , y〉 = x tPy

The mixed extension of the initial game P: (Σn,Σm, f (x , y) = x tPy)
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To prove existence of a rational outcome

What must be proved, to have existence of a rational outcome:

1) v1 = v2;

2) there exists x̄ fulfilling

v1 = sup
x

inf
y
f (x , y) = inf

y
f (x̄ , y)

3) there exists ȳ fulfilling

v2 = inf
y

sup
x

f (x , y) = sup
x

f (x , ȳ)
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The von Neumann theorem

Theorem

A two player, finite, zero sum game as described by a payoff matrix P has
a rational outcome.

The players have optimal strategies and v := v1 = v2 is what PL1
receives from Pl2.
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Finding optimal strategies:Pl1

Pl1 must choose a probability distribution Σn 3 x = (x1, . . . , xn):

x1p11 + · · ·+ xnpn1 ≥ v
. . .
x1p1j + · · ·+ xnpnj ≥ v
. . .
x1p1m + · · ·+ xnpnm ≥ v ,

(1)

where v must be as large as possible.
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Finding optimal strategies:Pl2

Pl2 must choose a probability distribution Σm 3 y = (y1, . . . , ym):

y1p11 + · · ·+ ymp1m ≤ w
. . .
y1pi1 + · · ·+ ympim ≤ w
. . .
y1pn1 + · · ·+ ympnm ≤ w ,

(2)

where w must be as small as possible.
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In matrix form

Pl1:

 maxx,v v :
P tx ≥ v1m

x ≥ 0 〈1, x〉 = 1
. (3)

Pl2:

 miny ,w w :
Py ≤ w1n

y ≥ 0 〈1, y〉 = 1
. (4)

Easy to see that these problems are in duality, they are feasible, and the
two values agree.
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Summarizing

A finite zero sum game has always rational outcome in mixed strategies

The set of optimal strategies for the players is a nonempty closed convex
set

The outcome, at each pair of optimal strategies, is the common
conservative value v of the players
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