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Example 1

Player One does not know if player Two wants to spend the evening together at C or at S

Probability 1
2

(
(2, 1) (0, 0)
(0, 0) (1, 2)

)

Probability 1
2

(
(2, 0) (0, 2)
(0, 1) (1, 0)

)

Expected payoffs player One

(C,C) (C,S) (S,C) (S,S)

C 2 1 1 0

S 0 1
2

1
2

1

Nash equilibrium (C, CS), since the best reaction to C of the player 2 willing to meet is C unwilling to meet is S. For player 1, the best
reaction to (C, S) is C as seen in the above table
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Example 2

Both Players do not know if the other wants to spend the evening together at C or at S. Player One assigns probability 1
2

, 1
2

to Player

Two being “(meeting, alone)”, Player Two assigns probability 2
3

, 1
3

to Player one being “(meeting, alone)”

Here Player One is “meeting” (
(2, 1) (0, 0)
(0, 0) (1, 2)

)
,

(
(2, 0) (0, 2)
(0, 1) (1, 0)

)
.

Player One is “alone” (
(0, 1) (2, 0)
(1, 0) (0, 2)

)
,

(
(0, 0) (2, 2)
(1, 1) (0, 0)

)

Expected payoffs of the players
Player One (on the left when meeting)

(C,C) (C,S) (S,C) (S,S)

C 2 1 1 0

S 0 1
2

1
2

1

(C,C) (C,S) (S,C) (S,S)

C 0 1 1 2

S 1 1
2

1
2

0

Player 2 (on the left when meeting)

(C,C) (C,S) (S,C) (S,S)

C 1 2
3

1
3

0

S 0 2
3

4
3

2

(C,C) (C,S) (S,C) (S,S)

C 0 1
3

2
3

1

S 2 4
3

2
3

0
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The way to model the situation

The variants of the game are possible states of the nature

We can assume Nature selects the game to play

The nature sends a signal to the players, telling them which type of
players they are (in the first example Player 1 is of one possible type,
willing to meet, Player 2 is of two types)

The players must have probability distribution any time they have
uncertainty on the state of the world

The difference among types of players is (only) in the payoffs
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Bayesian games

Definition

A Bayesian game is

1 a set of players

2 a set Ω of states

To each player are associated:

1 a set of strategies

2 a set of signals assigning a signal to each state

3 a probability distribution over the set of states associated with each
signal

4 a payoff function defined on the pairs (a, ω), where a is a strategy
profile and ω is a state.
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Notation

Denote by τi (·) the player i’s signal function

Let {t1
i , . . . , t

k(i)
i } = τi (Ω) be the set of the types of Player i

For each player strategies are the same regardless the type determined by
the state

The probability distribution over the set of states associated with each
signal received by Player i is called belief of player i
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Back to Example 1

1 Players: the pair of people having to decide to meet or not

2 States: Ω = {ω1, ω2}, where we can assume that ω1 represents
“meeting” , ω2 “alone”.

3 Strategies: C and S for both players

4 Player One receives only one signal: τ1(ω1) = τ1(ω2), Player Two
receives two signals: τ2(ω1) 6= τ2(ω2): thus there is only one type of
player One, and two types of player Two.

5 Beliefs: player One assigns probability 1
2 to each of the two states

associated with the unique signal received, player Two, types one
and two, assigns probability 1 to each (unique) state associated with
the signal received

6 Payoffs: bimatrices (1) and (2)
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Back to Example 2

1 Players: the pair of people having to decide to meet or not

2 States: Ω = {ω1, ω2, ω3, ω4}, where we can assume that ω1

represents “meeting,meeting” , . . .ω4 “(alone, alone)”.

3 Strategies: C and S for both players

4 Player One receives two signals: τ1(ω1) = τ1(ω2) = t1
1 ,

τ1(ω3) = τ1(ω4) = t2
1 . Player Two receives two signals:

τ2(ω1) = τ2(ω3) = t1
2 , τ2(ω2) = τ2(ω4) = t2

2 : there are two types
(t1

1 , t
2
1 ) of player One, and two types (t1

2 , t
2
2 ) of player Two.

5 Beliefs: player One, no matter her type is, assigns probability 1
2 to

each of the two types of player Two,, each type of player Two
assigns probability 2

3 to ”player One is meeting”, 1
3 to ”player One is

”alone ”

6 Payoffs: bimatrices (1) (2) (3) (4): the state decides the matrix, a
strategy profile the entry of the matrix
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Visualizing signals and types in Example 2

ω1 ω2

ω4ω3

t1
1

t2
1

t1
2 t2

2

ω1 = mm

ω2 = ma

ω3 = am

ω4 = aa

τ1(ω1) = τ1(ω2) = t1
1

τ1(ω3) = τ1(ω4) = t2
1

τ2(ω1) = τ2(ω3) = t1
2

τ2(ω2) = τ2(ω4) = t2
2

Observe Player One has same probability distributions on types of Player
Two, and conversely. But this is specific here, in general this is not the
case
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Bayes Nash equilibrium: notation

Let p(ω, ti ) be the probability that type ti of player i assigns to the state
ω

Let a(j , τj(ω)) be the strategy used by player j when she observes signal
τj(ω), let âj(ω) = a(j , τj(ω)).

The expected payoff of type ti if she selects strategy ai and a strategy
profile â(ω) is fixed:

∑
ω∈Ω

p(ω, ti )ui ((ai , â−i (ω)), ω), (1)

where ui (a, ω) is the utility of player i when the strategy profile a is
given, and under the state ω
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Bayes Nash equilibrium: definition

Definition

A Nash equilibrium in a Bayesian game is the Nash equilibrium of the
following strategic game:

1 Players: each pair (i , ti )

2 Strategies: each pair (i , ti ) has the set Ai of strategies of Player i in
the Bayesian game

3 Payoffs: each pair (i , ti ) has payoff defined as in (1)

∑
ω∈Ω

p(ω, ti )ui ((ai , â−i (ω))ω)
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An interesting example: first case

First case: both Players have the same beliefs:

Probability 1
2 (T ,B strategies of the first, a, b, c of the second)

(
(4, 2) (4, 0) (4, 3)
(8, 8) (0, 0) (0, 12)

)

Probability 1
2

(
(4, 2) (4, 3) (4, 0)
(8, 8) (0, 12) (0, 0)

)
Since BR2(T ) =BR2(B) = a and BR1(a) = B then the unique
equilibrium provides (8, 8)
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An interesting example: second case

Now Player 1 has the same beliefs as before, Player 2 is informed of the
state:

Probability 1
2 (T ,B strategies of the first, a, b, c of the second)

(
(4, 2) (4, 0) (4, 3)
(8, 8) (0, 0) (0, 12)

)

Probability 1
2

(
(4, 2) (4, 3) (4, 0)
(8, 8) (0, 12) (0, 0)

)

Payoffs Player One:
(a,a) (a,b) (a,c) (b,a) (b,b) (b,c) (c,a) (c,b) (c,c)

T 4 4 4 4 4 4 4 4 4
B 8 4 4 4 0 0 4 0 0
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An interesting example: conclusion

Payoffs Player One:
(a,a) (a,b) (a,c) (b,a) (b,b) (b,c) (c,a) (c,b) (c,c)

T 4 4 4 4 4 4 4 4 4
B 8 4 4 4 0 0 4 0 0

Since BR2(T ) = (c , b) and BR2(B) = (c , b), then

{(T , (c , b)} unique BN equilibrium with payoffs (4, 3, 3)
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Auctions

Auctions: remember, there are several types, since ancient times. . .

1 Sequential offers

2 Sealed

3 First price

4 Second price

5 Different termination rules
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Auctions: complete information

Suppose there are n bidders, each one has a valuation v of the object,
and suppose v1 > v2 > · · · > vn

Each bidder proposes a (non negative) bid. Some rule must handle ties

An assignment rule for the payment must be done

We consider only auctions where the winner is the highest bid
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First price

For the first price auction the payment rule is: the winner j offering the
bid bj pays her bid. Other players pay nothing

Game:

1 Players: the n bidders (n ≥ 2)

2 Strategies: [0,+∞) for each player

3 Payoffs: let bi be the bid of player i and let b̂ = max b−i . If either
bi > b̂ or bi = b̂ and the breaking rule assigns the object to i , the
payoff for i is vi − bi . Otherwise it is 0
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Nash equilibria for the first price auction

1 One Nash equilibrium is (v2, v2, v3, . . . , vn)

2 In all equilibria the winner is Player One

3 The two highest bids are the same and one is made by Player One.
The highest bid b1 satisfies v2 ≤ b1 ≤ v1. All such bid profiles are
Nash equilibria

4 for i bidding more than vi is weakly dominated
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Second price

For the second price auction the payment rule is: the winner j offering
the bid bj pays the second best bid. Other players pay nothing

Game:

1 Players: the n bidders (n ≥ 2)

2 Strategies: [0,+∞) for each player

3 Payoffs: Let bi be the bid of player i and let b̂ = max b−i . If either
bi > b̂ or bi = b̂ and the breaking rule assigns the object to i , the
payoff for i is vi − b̂. Otherwise it is 0
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Nash equilibria for the second price auction

1 One Nash equilibrium is (v1, v2, v3, . . . , vn)

2 Other equilibria: (v1, 0, 0, . . . , 0), (v2, v1, v3, . . . , vn)

3 A player’s bid equalizing her evaluation is a weakly dominant
strategy
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Auctions with incomplete information

Assumptions

1 There are v , v̄ such that the evaluation vi of each Player i fulfills
v ≤ vi ≤ v̄

2 each Player knows that all other evaluations are in [v , v̄ ]

3 there is a (common) function f ; [0,∞)→ [0, 1], increasing, with
f (v) = 0, f (v̄) = 1 such that the probability that any evaluation is
less than v is f (v)

4 breaking rule: in case of multiple winners they share the earning
(evaluation -bid)
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The game

1 Players: the bidders

2 States: all possible profiles (v1, . . . , vn) with vi ∈ [v , v̄ ]

3 τi (v1, . . . , vn) = vi
4 Beliefs: Every type of Player i assigns probability

f (v1)× f (vi−1)× f (vi+1)× f (vn) to the event that the evaluation of
Player j is at most vj

5 Payoffs: For Player i in state (v1, . . . , vn) it is 0 if bi < b̂, otherwise

it is vi−p(b)
m , where p(b) is the paid price (depending on the type of

auction), and m is the number of people bidding b̂
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Nash equilibria for the first price

1 bid vi of type vi weakly dominates greater bids,

2 bid vi of type vi is weakly dominated by a lower bid

3 a symmetric BN equilibrium is

E (v) = v −

∫ v

v
[f (x)]n−1 dx

[f (v)]n−1

for v ∈ [v , v̄ ], showing that E (v) < v
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The two bidders case and uniform distribution

Suppose the bidders are two and f is uniform distribution in [0, 1]. In this
case the symmetric equilibrium provides 1

2v

Suppose each type of Player two plays in this way. Then bids of Player
two are uniformly distributed in [0, 1/2]. Thus Player One wins for sure
offering more than 1/2. If she offers b1 < 1/2, she wins if the evaluation
of the second player is less than 2b1. Thus the payoff function of type v1

of Player one is{
2b1(v1 − b1) if 0 ≤ b1 ≤ 1/2

v1 − b1 otherwise

The maximum of the payoff function is when b1 = 1
2v1
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Nash equilibria for the second price

For every type of every bidder bidding her real evaluation is a weakly
dominant strategy

Second price is non manipulable
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