Zero-Sum Games

Roberto Cominetti

LUISS

Contents of the week

- Zero sum games
- Conservative values
- Von Neumann theorem
- Fair games

Zero sum games

An interesting case of non cooperative game is is when there are two players, with opposite interests.

Definition
A two player zero sum game in strategic form is given by strategy sets X and Y and a payoff function $f: X \times Y \rightarrow \mathbb{R}$

Conventionally $f(x, y)$ is what Player I gets from Player II, when they play x, y respectively. The payoff for Player II is $-f(x, y)$ (she pays $f(x, y)$ to Player I).

Finite zero-sum games

In the finite case $X=\{1,2, \ldots, n\}, Y=\{1,2, \ldots, m\}$ the game is described by a payoff matrix P

Example

$$
P=\left(\begin{array}{lll}
4 & 3 & 1 \\
7 & 5 & 8 \\
8 & 2 & 0
\end{array}\right)
$$

Player I selects row i, Player II selects column j.

Conservative values

$$
\left(\begin{array}{lll}
4 & 3 & 1 \\
7 & 5 & 8 \\
8 & 2 & 0
\end{array}\right)
$$

Player I can guarantee herself to get at least

$$
v_{1}=\max _{i} \min _{j} p_{i j}=\max \{1,5,0\}=5
$$

Player II can guarantee himself to pay no more than

$$
v_{2}=\min _{j} \max _{i} p_{i j}=\min \{8,5,8\}=5
$$

Rational outcome: $i^{*}=2, j^{*}=2$,
Value $v_{1}=v_{2}=5$

Alternative idea of solution

Suppose

- $v_{1}=v_{2}:=v$
- i^{*} is the row attaining the $\max _{i} \min _{j} p_{i j}=v$ so that $p_{i^{*} j} \geq v$ for all j
- j^{*} is the column attaining the $\min _{j} \max _{i} p_{i j}=v$ so that $p_{i j^{*}} \leq v$ for all i

Then $p_{i^{*} j^{*}}=v$ is the rational outcome of the game.

Remark

- i^{*} is an optimal strategy for Player I, because he cannot get more than v, since v is the conservative value of Player II
- j^{*} is an optimal strategy for Player II, because he cannot pay less than v, since v is the conservative value of Player I

The equality $v_{1}=v_{2}$ need not hold

Example

$$
P=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

$v_{1}=-1, v_{2}=1$
Nothing unexpected...

General zero-sum games

$f: X \times Y \rightarrow \mathbb{R}$
The players can guarantee to themselves (almost) the conservative values:
Player I: $v_{1}=\sup _{x} \inf _{y} f(x, y)$
Player II: $v_{2}=\inf _{y} \sup _{x} f(x, y)$
We always have $v_{1} \leq v_{2}$
$v_{1} \leq v_{2}$

Proposition

$$
v_{1}=\sup _{x} \inf _{y} f(x, y) \leq \inf _{y} \sup _{x} f(x, y)=v_{2}
$$

Proof Observe that, for all x, y,

$$
\inf _{y} f(x, y) \leq f(x, y) \leq \sup _{x} f(x, y)
$$

Thus

$$
\inf _{y} f(x, y) \leq \sup _{x} f(x, y)
$$

Since the left hand side does not depend on y and the right hand side does not depend on x, the thesis follows.

Saddle points and Nash equilibria of zero-sum games

Suppose that we have strategies \bar{x} and \bar{y} such that for all $y \in Y$ and $x \in X$

$$
f(x, \bar{y}) \leq f(\bar{x}, \bar{y}) \leq f(\bar{x}, y) .
$$

Such a pair (\bar{x}, \bar{y}) is called a saddle point.
Let $v=f(\bar{x}, \bar{y})$. Then

- The rational outcome of the game is $v_{1}=v_{2}=v$
- \bar{x} is an optimal strategy for Player I
- \bar{y} is an optimal strategy for Player II

The Nash equilibria of a zero sum game

Theorem
Let X, Y be nonempty strategy sets and $f: X \times Y \rightarrow \mathbb{R}$. Then the following are equivalent:
(1) The pair (\bar{x}, \bar{y}) is a Nash equilibrium, i.e. fulfills

$$
f(x, \bar{y}) \leq f(\bar{x}, \bar{y}) \leq f(\bar{x}, y) \quad \forall x \in X, \forall y \in Y
$$

(2) The following conditions are satisfied:
(i) $\inf _{y} \sup _{x} f(x, y)=\sup _{x} \inf _{y} f(x, y)$: the two conservative values agree
(ii) $\inf _{y} f(\bar{x}, y)=\sup _{x} \inf _{y} f(x, y): \bar{x}$ is optimal for Player I
(iii) $\sup _{x} f(x, \bar{y})=\inf _{y} \sup _{x} f(x, y): \bar{y}$ is optimal for Player II

Proof

Proof 1) implies 2). From 1) we get:

$$
\inf _{y} \sup _{x} f(x, y) \leq \sup _{x} f(x, \bar{y})=f(\bar{x}, \bar{y})=\inf _{y} f(\bar{x}, y) \leq \sup _{x} \inf _{y} f(x, y)
$$

Since $v_{1} \leq v_{2}$ always holds, all above inequalities are equalities
Conversely, suppose 2) holds Then

$$
\inf _{y} \sup _{x} f(x, y) \stackrel{(i i i)}{=} \sup _{x} f(x, \bar{y}) \geq f(\bar{x}, \bar{y}) \geq \inf _{y} f(\bar{x}, y) \stackrel{(i i)}{=} \sup _{x} \inf _{y} f(x, y)
$$

Because of (i), all inequalities are equalities and the proof is complete

Mixed extension of a zero-sum game

Zero-sum finite game: $n \times m$ matrix P.
Mixed strategy space for Player I:

$$
X=\Sigma_{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{i} \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}
$$

Mixed strategy space for Player II:

$$
Y=\Sigma_{m}=\left\{y=\left(y_{1}, \ldots, y_{m}\right): y_{j} \geq 0, \sum_{j=1}^{m} y_{j}=1\right\}
$$

Expected payoff:

$$
f(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{m} p_{i j} x_{i} y_{j}=x^{t} P y
$$

To prove existence of a rational outcome

What must be proved to have existence of a rational outcome:
(1) $v_{1}=v_{2}$
(2) there exists \bar{x} such that

$$
v_{1}=\sup _{x} \inf _{y} f(x, y)=\inf _{y} f(\bar{x}, y)
$$

(3) there exists \bar{y} such that

$$
v_{2}=\inf _{y} \sup _{x} f(x, y)=\sup _{x} f(x, \bar{y})
$$

In the finite case \bar{x} and \bar{y} fulfilling 2) and 3) always exist; thus it suffices to establish 1).

The von Neumann theorem

Theorem
A two player, finite, zero sum game as described by a payoff matrix P has a rational outcome: the two conservative values of the players coincide and there are optimal strategies \bar{x}, \bar{y} for the players.

Remark

We remind that when the two conservative values agree the strategy \bar{x} is optimal for Player I if and only if it guarantees her to get the (common conservative) value no matter what Player II does; dually the strategy \bar{y} is optimal for Player II if and only if it guarantees him to get the (common conservative) value no matter what Player I does.

Finding optimal strategies: Player I

Player I must choose a probability distribution $\Sigma_{n} \ni x=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{aligned}
& p_{11} x_{1}+\cdots+p_{n 1} x_{n} \geq v \\
& \cdots \\
& p_{1 j} x_{1}+\cdots+p_{n j} x_{n} \geq v \\
& \cdots \\
& p_{1 m} x_{1}+\cdots+p_{n m} x_{n} \geq v
\end{aligned}
$$

where v must be as large as possible

$$
\left(P_{1}\right)\left\{\begin{array}{l}
\max v \\
P^{t} x \geq v 1_{m} \\
1^{t} x=1 \\
x \geq 0, v \in \mathbb{R}
\end{array}\right.
$$

Finding optimal strategies: Player II

Player II must choose a probability distribution $\Sigma_{m} \ni y=\left(y_{1}, \ldots, y_{m}\right)$:

$$
\begin{aligned}
& p_{11} y_{1}+\cdots+p_{1 m} y_{m} \leq w \\
& \cdots \\
& p_{i 1} y_{1}+\cdots+p_{i m} y_{m} \leq w \\
& \cdots \\
& p_{n 1} y_{1}+\cdots+p_{n m} y_{m} \leq w
\end{aligned}
$$

where w must be as small as possible

$$
\left(P_{2}\right)\left\{\begin{array}{l}
\min w \\
P y \leq w 1_{n} \\
1^{t} y=1 \\
y \geq 0, w \in \mathbb{R}
\end{array}\right.
$$

In matrix form

$$
\left(P_{1}\right)\left\{\begin{array} { l }
{ \operatorname { m a x } v } \\
{ P ^ { t } x \geq v 1 _ { m } } \\
{ 1 ^ { t } x = 1 } \\
{ x \geq 0 , v \in \mathbb { R } }
\end{array} \quad (P _ { 2 }) \left\{\begin{array}{l}
\min w \\
P y \leq w 1_{n} \\
1^{t} y=1 \\
y \geq 0, w \in \mathbb{R}
\end{array}\right.\right.
$$

These linear programs are dual to each other !

Both are feasible \Rightarrow they have optimal solutions and there is no duality gap $v=w$

The complementarity conditions

The complementarity conditions become

- $x_{i}>0 \Longrightarrow \sum_{j=1}^{m} p_{i j} y_{j}=v$
- $y_{j}>0 \Longrightarrow \sum_{i=1}^{n} p_{j i} x_{i}=w$

Since $\sum_{i=1}^{n} p_{j i} x_{i}$ is the expected value for Player II if she plays column j and Player I the mixed strategy $x=\left(x_{1}, \ldots, x_{n}\right)$, the complementarity conditions show, one more time, that a Player must give a positive probability only to those pure strategies that have optimal expected payoff.

Summarizing

A finite zero sum game has always rational outcome in mixed strategies.
The set of Nash equilibria can be found by solving a pair of dual linear programming problems.

The outcome, at each pair of optimal strategies, is the common conservative value v of the players.

The set of optimal strategies for the players is a nonempty closed convex set, the smallest convex set containing a finite number of points, called the extreme points of the set.

As a consequence of the theorem

- Every Nash equilibrium (\bar{x}, \bar{y}) of the zero sum game provides optimal strategies for the players
- Any pair of optimal strategies for the players provides a Nash equilibrium for the zero sum game

Thus Nash theorem is a generalization of von Neumann theorem

A comment

Remark
Von Neumann approach with conservatives values shows that, in the particular case of the zero sum game:

- Each player can find an optimal strategy independently of the other player.
- Any pair of optimal strategies provides a Nash equilibrium; this implies no need of coordination to reach an equilibrium.
- Every Nash equilibrium provides the same utility (payoff) to the players: multiplicity of solutions does not create problems.
- Nash equilibria are easy to be found in zero sum games.

Fair games

Definition

A square matrix $n \times n P=\left(p_{i j}\right)$ is said to be anti-symmetric provided $p_{i j}=-p_{j i}$ for all $i, j=1, \ldots, n$. A finite zero sum game is said to be fair if the associated matrix is antisymmetric.

Example: Rock-Scissors-Paper.
In fair games there is no favorite player.

Fair outcome

Proposition
In a fair game

- the value is 0
- \bar{x} is an optimal strategy for Player I if and only if it is optimal for Player II

Proof Since

$$
x^{t} P x=\left(x^{t} P x\right)^{t}=x^{t} P^{t} x=-x^{t} P x,
$$

$f(x, x)=0$ for all x, thus $v_{1} \leq 0, v_{2} \geq 0$
Then $v=0$.

If \bar{x} is optimal for the Player $I, \bar{x}^{t} P y \geq 0$ for all y
Thus $y^{t} P \bar{x} \leq 0$ for all $y \in \Sigma_{n}$, and \bar{x} is optimal for Player II

Finding optimal strategies in a fair game

Need to solve the system of inequalities

$$
\begin{aligned}
& p_{11} x_{1}+\cdots+p_{n 1} x_{n} \geq 0 \\
& \cdots \\
& p_{1 j} x_{1}+\cdots+p_{n j} x_{n} \geq 0 \\
& \cdots \\
& p_{1 m} x_{1}+\cdots+p_{n m} x_{n} \geq 0
\end{aligned}
$$

with the extra conditions:

$$
x_{i} \geq 0, \quad \sum_{i=1}^{n} x_{i}=1
$$

A proposed exercise

Exercise

Find the optimal strategies of the players in the rock,scissors, paper game and in the following fair game:

$$
P=\left(\begin{array}{rrrr}
0 & 3 & -2 & 0 \\
-3 & 0 & 0 & 4 \\
2 & 0 & 0 & -3 \\
0 & -4 & 3 & 0
\end{array}\right)
$$

