Zero-Sum Games

Roberto Cominetti

LUISS
Contents of the week

- Zero sum games
- Conservative values
- Von Neumann theorem
- Fair games
Zero sum games

An interesting case of non cooperative game is when there are two players, with opposite interests.

Definition

A *two player zero sum game* in strategic form is given by strategy sets X and Y and a payoff function $f : X \times Y \rightarrow \mathbb{R}$

Conventionally $f(x, y)$ is what Player I gets from Player II, when they play x, y respectively. The payoff for Player II is $-f(x, y)$ (she pays $f(x, y)$ to Player I).
Finite zero-sum games

In the finite case $X = \{1, 2, \ldots, n\}$, $Y = \{1, 2, \ldots, m\}$ the game is described by a payoff matrix P

Example

$$P = \begin{pmatrix} 4 & 3 & 1 \\ 7 & 5 & 8 \\ 8 & 2 & 0 \end{pmatrix}$$

Player I selects row i, Player II selects column j.
Conservative values

\[
\begin{pmatrix}
4 & 3 & 1 \\
7 & 5 & 8 \\
8 & 2 & 0
\end{pmatrix}
\]

Player I can guarantee herself to get at least

\[v_1 = \max_i \min_j p_{ij} = \max\{1, 5, 0\} = 5\]

Player II can guarantee himself to pay no more than

\[v_2 = \min_j \max_i p_{ij} = \min\{8, 5, 8\} = 5\]

Rational outcome: \(i^* = 2, j^* = 2\), Value \(v_1 = v_2 = 5\)
Alternative idea of solution

Suppose

- \(\nu_1 = \nu_2 :\nu \)
- \(i^* \) is the row attaining the \(\max_i \min_j p_{ij} = \nu \) so that \(p_{i^*j} \geq \nu \) for all \(j \)
- \(j^* \) is the column attaining the \(\min_j \max_i p_{ij} = \nu \) so that \(p_{ij^*} \leq \nu \) for all \(i \)

Then \(p_{i^*j^*} = \nu \) is the rational outcome of the game.

Remark

- \(i^* \) is an optimal strategy for Player I, because he cannot get more than \(\nu \), since \(\nu \) is the conservative value of Player II
- \(j^* \) is an optimal strategy for Player II, because he cannot pay less than \(\nu \), since \(\nu \) is the conservative value of Player I
The equality $v_1 = v_2$ need not hold

Example

$P = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$

$v_1 = -1, \ v_2 = 1$

Nothing unexpected...
General zero-sum games

\[f : X \times Y \rightarrow \mathbb{R} \]

The players can guarantee to themselves (almost) the conservative values:

Player I: \(v_1 = \sup_x \inf_y f(x, y) \)

Player II: \(v_2 = \inf_y \sup_x f(x, y) \)

We always have \(v_1 \leq v_2 \)
Proposition

\[v_1 = \sup_x \inf_y f(x, y) \leq \inf_y \sup_x f(x, y) = v_2 \]

Proof

Observe that, for all \(x, y \),

\[\inf_y f(x, y) \leq f(x, y) \leq \sup_x f(x, y) \]

Thus

\[\inf_y f(x, y) \leq \sup_x f(x, y) \]

Since the left hand side does not depend on \(y \) and the right hand side does not depend on \(x \), the thesis follows.
Saddle points and Nash equilibria of zero-sum games

Suppose that we have strategies \bar{x} and \bar{y} such that for all $y \in Y$ and $x \in X$

$$f(x, y) \leq f(\bar{x}, \bar{y}) \leq f(\bar{x}, y).$$

Such a pair (\bar{x}, \bar{y}) is called a saddle point.

Let $\nu = f(\bar{x}, \bar{y})$. Then

- The rational outcome of the game is $\nu_1 = \nu_2 = \nu$
- \bar{x} is an optimal strategy for Player I
- \bar{y} is an optimal strategy for Player II
The Nash equilibria of a zero sum game

Theorem

Let X, Y be nonempty strategy sets and $f : X \times Y \to \mathbb{R}$. Then the following are equivalent:

1. The pair (\bar{x}, \bar{y}) is a Nash equilibrium, i.e. fulfills

 $$ f(x, \bar{y}) \leq f(\bar{x}, \bar{y}) \leq f(\bar{x}, y) \quad \forall x \in X, \forall y \in Y $$

2. The following conditions are satisfied:
 (i) $\inf_y \sup_x f(x, y) = \sup_x \inf_y f(x, y)$: the two conservative values agree
 (ii) $\inf_y f(\bar{x}, y) = \sup_x \inf_y f(x, y)$: \bar{x} is optimal for Player I
 (iii) $\sup_x f(x, \bar{y}) = \inf_y \sup_x f(x, y)$: \bar{y} is optimal for Player II
Proof

1) implies 2). From 1) we get:

\[
\inf_y \sup_x f(x, y) \leq \sup_x f(x, \bar{y}) = f(\bar{x}, \bar{y}) = \inf_y f(\bar{x}, y) \leq \sup_x \inf_y f(x, y)
\]

Since \(v_1 \leq v_2\) always holds, all above inequalities are equalities.

Conversely, suppose 2) holds. Then

\[
\inf_y \sup_x f(x, y) \overset{(iii)}{=} \sup_x f(x, \bar{y}) \geq f(\bar{x}, \bar{y}) \geq \inf_y f(\bar{x}, y) \overset{(ii)}{=} \sup_x \inf_y f(x, y)
\]

Because of (i), all inequalities are equalities and the proof is complete \(\blacksquare\)
Mixed extension of a zero-sum game

Zero-sum finite game: \(n \times m \) matrix \(P \).

Mixed strategy space for Player I:

\[
X = \Sigma_n = \{ x = (x_1, \ldots, x_n) : x_i \geq 0, \sum_{i=1}^{n} x_i = 1 \}
\]

Mixed strategy space for Player II:

\[
Y = \Sigma_m = \{ y = (y_1, \ldots, y_m) : y_j \geq 0, \sum_{j=1}^{m} y_j = 1 \}
\]

Expected payoff:

\[
f(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} x_i y_j = x^t P y
\]
To prove existence of a rational outcome

What must be proved to have existence of a rational outcome:

1. \(\nu_1 = \nu_2 \)
2. there exists \(\bar{x} \) such that
 \[
 \nu_1 = \sup_x \inf_y f(x, y) = \inf_y f(\bar{x}, y)
 \]
3. there exists \(\bar{y} \) such that
 \[
 \nu_2 = \inf_y \sup_x f(x, y) = \sup_x f(x, \bar{y})
 \]

In the finite case \(\bar{x} \) and \(\bar{y} \) fulfilling 2) and 3) always exist; thus it suffices to establish 1).
The von Neumann theorem

Theorem

A two player, finite, zero sum game as described by a payoff matrix P has a rational outcome: the two conservative values of the players coincide and there are optimal strategies \bar{x}, \bar{y} for the players.

Remark

We remind that when the two conservative values agree the strategy \bar{x} is optimal for Player I if and only if it guarantees her to get the (common conservative) value no matter what Player II does; dually the strategy \bar{y} is optimal for Player II if and only if it guarantees him to get the (common conservative) value no matter what Player I does.
Finding optimal strategies: Player I

Player I must choose a probability distribution $\Sigma_n \ni x = (x_1, \ldots, x_n)$:

\[
p_{11}x_1 + \cdots + p_{n1}x_n \geq v \\
\vdots \\
p_{1j}x_1 + \cdots + p_{nj}x_n \geq v \\
\vdots \\
p_{1m}x_1 + \cdots + p_{nm}x_n \geq v
\]

where v must be as large as possible

\[
(P_1) \begin{cases}
\max v \\
P^t x \geq v1_m \\
1^t x = 1 \\
x \geq 0, v \in \mathbb{R}
\end{cases}
\]
Finding optimal strategies: Player II

Player II must choose a probability distribution $\Sigma \ni y = (y_1, \ldots, y_m)$:

$$p_{11}y_1 + \cdots + p_{1m}y_m \leq w$$
$$\vdots$$
$$p_{i1}y_1 + \cdots + p_{im}y_m \leq w$$
$$\vdots$$
$$p_{n1}y_1 + \cdots + p_{nm}y_m \leq w$$

where w must be as small as possible

$$\begin{cases}
\min w \\
Py \leq w1_n \\
1^t y = 1 \\
y \geq 0, w \in \mathbb{R}
\end{cases}$$

\((P_2) \)
In matrix form

\[(P_1)\left\{ \begin{array}{l} \max v \\ P^t x \geq v 1_m \\ 1^t x = 1 \\ x \geq 0, \; v \in \mathbb{R} \end{array} \right. \]

\[(P_2)\left\{ \begin{array}{l} \min w \\ Py \leq w 1_n \\ 1^t y = 1 \\ y \geq 0, \; w \in \mathbb{R} \end{array} \right. \]

These linear programs are dual to each other!

Both are feasible \Rightarrow they have optimal solutions and there is no duality gap $v = w$
The complementarity conditions

The complementarity conditions become

- \(x_i > 0 \Rightarrow \sum_{j=1}^{m} p_{ij} y_j = v \)
- \(y_j > 0 \Rightarrow \sum_{i=1}^{n} p_{ji} x_i = w \)

Since \(\sum_{i=1}^{n} p_{ji} x_i \) is the expected value for Player II if she plays column \(j \) and Player I the mixed strategy \(x = (x_1, \ldots, x_n) \), the complementarity conditions show, one more time, that a Player must give a positive probability only to those pure strategies that have optimal expected payoff.
Summarizing

A finite zero sum game has always rational outcome in mixed strategies.

The set of Nash equilibria can be found by solving a pair of dual linear programming problems.

The outcome, at each pair of optimal strategies, is the common conservative value v of the players.

The set of optimal strategies for the players is a nonempty closed convex set, the smallest convex set containing a finite number of points, called the extreme points of the set.
As a consequence of the theorem

- Every Nash equilibrium \((\bar{x}, \bar{y})\) of the zero sum game provides optimal strategies for the players.
- Any pair of optimal strategies for the players provides a Nash equilibrium for the zero sum game.

Thus Nash theorem is a generalization of von Neumann theorem.
A comment

Remark

Von Neumann approach with conservatives values shows that, in the particular case of the zero sum game:

- Each player can find an optimal strategy *independently* of the other player.
- Any pair of optimal strategies provides a Nash equilibrium; this implies no need of coordination to reach an equilibrium.
- Every Nash equilibrium provides the same utility (payoff) to the players: multiplicity of solutions does not create problems.
- Nash equilibria are *easy to be found* in zero sum games.
Fair games

Definition

A square matrix $n \times n \ P = (p_{ij})$ is said to be anti-symmetric provided $p_{ij} = -p_{ji}$ for all $i, j = 1, \ldots, n$. A finite zero sum game is said to be fair if the associated matrix is antisymmetric.

Example: Rock-Scissors-Paper.

In fair games there is no favorite player.
How to find optimal strategies

Fair outcome

Proposition

In a fair game

- the value is 0
- \(\bar{x} \) is an optimal strategy for Player I if and only if it is optimal for Player II

Proof

Since

\[
x^tPx = (x^tPx)^t = x^tP^tx = -x^tPx,
\]

\(f(x, x) = 0 \) for all \(x \), thus \(v_1 \leq 0, v_2 \geq 0 \)

Then \(v = 0 \).

If \(\bar{x} \) is optimal for the Player I, \(\bar{x}^tPy \geq 0 \) for all \(y \)

Thus \(y^tP\bar{x} \leq 0 \) for all \(y \in \Sigma_n \), and \(\bar{x} \) is optimal for Player II \(\square \)
How to find optimal strategies

Finding optimal strategies in a fair game

Need to solve the system of inequalities

\[p_{11}x_1 + \cdots + p_{n1}x_n \geq 0 \]
\[\vdots \]
\[p_{1j}x_1 + \cdots + p_{nj}x_n \geq 0 \]
\[\vdots \]
\[p_{1m}x_1 + \cdots + p_{nm}x_n \geq 0 \]

with the extra conditions:

\[x_i \geq 0, \quad \sum_{i=1}^{n} x_i = 1 \]
A proposed exercise

Exercise

Find the optimal strategies of the players in the rock, scissors, paper game and in the following fair game:

\[
P = \begin{pmatrix}
0 & 3 & -2 & 0 \\
-3 & 0 & 0 & 4 \\
2 & 0 & 0 & -3 \\
0 & -4 & 3 & 0
\end{pmatrix}
\]