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Example: the dual of the production planning problem

A small manufacturer produces tools of types A and B, that require different
amounts of labor, wood and metal, and yield different profits

Tool Labor Wood Metal Profit
type [hr/unit] [kg/unit] [kg/unit] [e/unit]

A 1.0 1.0 2.0 50
B 2.0 1.0 1.0 40

Available are 120 hours of labor, 70 units of wood, and 100 units of metal.
The optimal production mix x∗A = 30 / x∗B = 40 was found by solving

max 50 xA + 40 xB

s.t. xA + 2 xB ≤ 120
xA + xB ≤ 70
2 xA + xB ≤ 100
xA ≥ 0, xB ≥ 0
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Example: the dual of the production planning problem

Imagine that we want to make a takeover operation to buy all the resources held
by the manufacturer: 120[h] of labor, 70[kg] of wood, 100[kg] of metal.

What prices should we offer so that our proposal is acceptable?

Are 5 [e/hr] for labor, 5 [e/kg] for wood, 10 [e/kg] for metal, fair prices?

Note that each unit of Tool A yields e50 of revenue to the manufacturer. If
instead she sells the resources needed to produce that unit, she would only get

1 unit of Tool A
1[h] of labor = e5
1[kg] of wood = e5
2[kg] of metal = e20
Selling revenue = e30

Not a good deal... she will certainly reject our offer !
She is better off by keeping the resources and use them to produce tools.
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Example: the dual of the production planning problem

What if we increase the price we offer for metal to 20 [e/kg]?

In this case selling the resources required for one unit of Tool A would give

1 unit of Tool A
1[h] of labor = e5
1[kg] of wood = e5
2[kg] of metal = e40
Selling revenue = e50

The manufaturer will now be indifferent between keeping the resources and use
them to produce a Tool A, or selling the materials. If we increase any of the prices,
even by a tiny amount, the manufacturer will be strictly better off by selling.

In general, if we set prices yl , yw , ym our offer will be acceptable as long as

1 yl + 1 yw + 2 ym ≥ 50

Is this enough? What about Tool B?
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Example: the dual of the production planning problem

What about Tool B? At 5 [e/hr] for labor, 5 [e/kg] for wood, 20 [e/kg] for
metal, the selling revenue per unit of Tool B would be

1 unit of Tool B
2[h] of labor = e10
1[kg] of wood = e5
1[kg] of metal = e20
Selling revenue = e35

Not a good deal... our offer will still be rejected!

Our proposed prices yl , yw , ym should also be competitive in terms of the revenue
provided by each unit of Tool B, which translates into

2 yl + 1 yw + 1 ym ≥ 40
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Example: the dual of the production planning problem

In summary, our proposed prices must be non-negative and satisfy both

yl + yw + 2 ym ≥ 50

2 yl + yw + ym ≥ 40

Since there are many set of prices that meet these conditions, we might ask which
ones are the most convenient from our perspective as buyers?

Since we want to buy all the resources: 120[h] of labor, 70[kg] of wood, 100[kg] of
metal, our final bill would be

120yl + 70yw + 100ym

which leads us naturally to consider the following associated dual linear program
min 120yl + 70yw + 100ym

s.t. yl + yw + 2 ym ≥ 50
2 yl + yw + ym ≥ 40
yl ≥ 0, yw ≥ 0, ym ≥ 0
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Example: the dual of the production planning problem

Primal


max 50 xA + 40 xB

s.t. xA + 2 xB ≤ 120 ← yl (labor)

xA + xB ≤ 70 ← yw (wood)

2 xA + xB ≤ 100 ← ym (metal)

xA ≥ 0, xB ≥ 0

Dual


min 120yl + 70yw + 100ym

s.t. yl + yw + 2 ym ≥ 50
2 yl + yw + ym ≥ 40
yl ≥ 0, yw ≥ 0, ym ≥ 0

Each resource constraint in the primal gets associated a dual variable (price).

The right hand side coefficients in the primal become the coefficients of the
dual objective function, and vice-versa.

The constraint matrix in the dual is just the transpose of the primal matrix.

The constraint inequalities are reversed.
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Example: The dual of the production planning problem

Economic interpretation: the dual problem computes prices which reflect the
value that each resource contributes as part of the production process, and which
is derived implicitly from the prices of the final products. Only scarce resources
get positive prices, whereas over-abundant resources will have their prices set to 0.

Alternatively, dual prices measure the impact in total revenue when an additional
unit of the resource becomes available. If market prices are below the dual prices,
then one could make a net profit by buying more resources at those market prices
and putting them to work in the production process.

In other words, in a perfect market the prices that one should observe should
match those predicted by the dual problem, and reflect exactly the value of each
resource as an input for all the production processes for which it is relevant.
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Example: the dual of the production planning problem

Algebraic interpretation: another way to interpret the dual comes from the
observation that every dual feasible solution provides an upper bound for the
optimal revenue vp that the manufaturer can achieve.

Indeed, let x ≥ 0 and y ≥ 0 be primal and dual feasible solutions respectively.
Multiplying each resource inequality by the corresponding price and summing

(xA + 2xB)yl + (xA + xB)yw + (2xA + xB)ym ≤ 120yl + 70yw + 100ym

Rearraging the right hand side we have

xA(yl + yw + 2ym) + xB(2yl + yw + ym) ≤ 120yl + 70yw + 100ym

and then dual feasibility yields

50xA + 40xB ≤ 120yl + 70yw + 100ym

Hence 120yl + 70yw + 100ym is an upper bound for the optimal revenue vp.

The dual problem is therefore computing the smallest of such upper bounds.
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Dual linear programs: Canonical Form

(PC )

 max c tx
Ax ≤ b
x ≥ 0

(DC )

 min bty
Aty ≥ c
y ≥ 0

Exercise (The dual of the dual is the primal)

Rewrite (DC ) as a maximization problem and show that its dual is (PC ).
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Dual linear programs: Standard Form

(PS)

 max c tx
Ax = b
x ≥ 0

(DS)

{
min bty
Aty ≥ c

Exercise (The duals in canonical and standard forms are equivalent)

1 Transform (PS) into canonical form; formulate the dual of the latter; and
then show that this is equivalent to (DS).

2 Starting from the canonical form (PC ); transform it into standard form and
check that the corresponding dual is equivalent to (DC ).
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Feasibility of dual programs

Simple examples show that, given two problems in duality, the following three
situations may occur:

Both problems have feasible solutions

Exactly one of them is feasible

Both of them are infeasible
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Example 1

Consider the primal problem

(P)

 max x1 + 3x2
x1 + 2x2 ≤ 7
x ≥ 0

and its dual

(D)


min 7y
y ≥ 1
2y ≥ 3
y ≥ 0

Since x = (0, 0) fulfills the constraints of the primal problem, and y = 2 satisfies
the dual constraints, both problems are feasible.
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Example 2

Consider the primal program

(P)


max x1 − x2
x1 + x2 ≤ 1
−x1 − x2 ≤ −2
x ≥ 0

and its dual

(D)


min y1 − 2y2
y1 − y2 ≥ 1
y1 − y2 ≥ −1
y ≥ 0

The primal is infeasible (can you see why?) while y = (1, 0) is feasible for the dual.

Exercise

Find an example where the primal is feasible but not the dual, and another
example where they are both infeasible.
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Weak duality theorem

Theorem

Let vp be the value of the primal maximization problem and vd the value of the
dual minimization problem. Then

vp ≤ vd

Proof
Canonical form: for each x ≥ 0 primal-feasible we have Ax ≤ b so that for y ≥ 0
dual-feasible we get the inequalities

bty ≥ (Ax)ty = x tAty ≥ x tc = c tx

Since this is true for all admissible x and y the result follows.

Standard form: for all x ≥ 0 primal-feasible and y dual-feasible we have

bty = (Ax)ty = x tAty ≥ x tc = c tx .
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Strong duality theorem

Theorem

If the primal and dual problems are feasible, then both problems have optimal
solutions x̄ , ȳ and the optimal values coincide

vp = c t x̄ = bt ȳ = vd .

In this case we say that there is no duality gap.

If the primal is feasible and the dual is infeasible, then vp = vd =∞
If the primal is infeasible and the dual is feasible, then vp = vd = −∞
If both the primal and the dual are infeasible, then vp = −∞ < vd =∞

Corollary

If the primal problem is feasible and has an optimal solution, then also the dual
problem is feasible and has solutions. Moreover there is no duality gap.
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Complementarity conditions: Canonical Form

(P)

{
max c tx
Ax ≤ b, x ≥ 0

; (D)

{
min bty
Aty ≥ c , y ≥ 0

An inequality constraint is called tight (binding, active) if it holds as an equality.

Theorem

Let x̄ , ȳ be feasible solutions for the primal and dual respectively. Then x̄ , ȳ are
simultaneously optimal solutions if and only if

a) If a primal variable is positive x̄i > 0, then the i-th dual constraint is tight.

b) If a dual variable is positive ȳj > 0, then the j-th primal constraint is tight.

Proof: Since c tx ≤ y tAx ≤ bty it follows that x̄ , ȳ are optimal iff

c t x̄ = ȳ tAx̄ = bt ȳ

This equality can be written both as x̄ t(At ȳ − c) = 0 or in the form
ȳ t(Ax̄ − b) = 0. Since x̄ , ȳ ≥ 0 and Ax̄ ≤ b,At ȳ ≥ c the latter are equivalent to
(CC).
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An example

Consider the pair of dual linear programs

(P)


max 2x1 − 2x2
2x1 − x2 ≤ 1
x1 − 2x2 ≤ 1
x ≥ 0

(D)


min y1 + y2
2y1 + y2 ≥ 2
y1 + 2y2 ≤ 2
y ≥ 0

We have vp = vd = 1 with optimal solutions x̄ = ( 1
2 , 0) and ȳ = (1, 0).

Check of the complementarity conditions:

x̄1 = 1
2> 0 ⇒ 2ȳ1 + ȳ2=2

ȳ1 = 1> 0 ⇒ 2x1 − x2=1
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Another example

(P)


max x1 − 3x2 − 4x3
x1 − x3 ≤ 1
−x2 − x3 ≤ 4
x ≥ 0

(D)


min y1 + 4y2
y1 ≥ 1
y2 ≤ 3
y1 + y2 ≤ 4
y ≥ 0

The common optimal value of the problems is vp = vd = 1.
Optimal solutions: for the primal x = (1, 0, 0) and for the dual y = (1, 0).

Exercise

Check the complementarity conditions.
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