Concepts of similarities for utility functions Sofia, Workshop on **Topological Methods in Analysis and Optimization**¹

Roberto Lucchetti

Politecnico di Milano

June 13, 2013

¹Joint work with G. Beer, A.Caserta, G. Di Maio

Preferences of the consumers/agents

We are given

- X, a metric space (the commodity space);
- ② agents with preferences on subsets of X.

Our (final) goal

To define and study the idea of agents having similar preferences

A preference relation on a set D is a subset \mathcal{R} of $D \times D$ such that:

- $(d, d) \in \mathcal{R}$ for all $d \in D$; (reflexivity)
- $(d, e) \in \mathcal{R}$ and $(e, f) \in \mathcal{R}$ imply $(d, f) \in \mathcal{R}$; (transitivity)
- for $d, e \in D$, either $(d, e) \in \mathcal{R}$ or $(e, d) \in \mathcal{R}$, or both. (completeness)²

A basic problem: to associate a utility function to \mathcal{R} :

Definition

A utility function for the preference relation is a function $u : D \to \mathbb{R}$ such that:

$$u(d) \geq u(e) \Leftrightarrow d \succeq e.$$

 $^2\mathsf{I}$ shall write, as usual, $d\succeq e$ rather than $(d,e)\in\mathcal{R}$

Possible generalizations

- no completeness
- no transitivity (but weaker forms anyway)

This requires adaptations of the definition of utility function:

f.i.

$$d \succeq e \Rightarrow u(d) \ge u(e), d \succ e \Rightarrow u(d) > u(e)^3.$$

But also other approaches are considered (f.i. Multi-utility representation: Evren-Ok,NP-preference structures, Giarlotta-Greco)

 $^{3}d \succ e \text{ means } (d, e) \in \mathcal{R} \land (e, d) \notin \mathcal{R}.$

Further possible generalizations

A utility representation of (X, \prec) is a pair (U, f), where

- (U, <) is the base chain of the representation,
- $f: X \hookrightarrow U$ is a utility function, i.e., an order preserving embedding: $x \prec y \Leftrightarrow f(x) < f(y)$ for each $x, y \in X$.

Classical case, the base chain is $(\mathbb{R},<)$

Typical example \mathbb{R}^n_{lex}

Herden, Metha Caserta, Giarlotta, Watson

Existence of utility functions

A utility function needs not to exist:

The simplest example is \mathbb{R}^2 with the lexicographical order.

However: Call closed a relation \succeq such that the sets:

$$\{d \in D : d \succeq x\}, \qquad \{d \in D : d \preceq x\}$$

are closed for every $x \in D$.

Then the following result holds:

Theorem

Let X be a separable metric space. Suppose \succeq is closed. Then there exists a continuous utility function for \succeq .

Classical result by Debreu.

The Kannai topology

In the paper Continuity properties of the core of a market

Econometrica, 38, 1970

Kannai defines a topology on the set of continuous preferences on $X = \mathbb{R}_+^l$ which turns out to be equivalent to Kuratowski convergence of the graphs

A subbasis for this topology is defined by means of the sets

$$A_{ij} = \{ \prec : x \prec y, \forall x \in B_i, \forall y \in B_j \},\$$

where B_k is an enumeration of all balls centered at rational points of X and with rational radius.

First example of a topology on consumer's preferences

The space of partial maps

Definition

A partial map between the metric spaces (X, d) and (Y, ρ) is a pair (D, u), where $D \in CL(X)$, $u : D \rightarrow Y$ is a map.

The partial map (\hat{D}, \hat{u}) is called extension of the map (D, u) if $D \subset \hat{D}$ and $\hat{u}(d) = u(d)$ for all $d \in D$. It is called a restriction of the map (D, u)if $\hat{D} \subset D$ and $\hat{u}(d) = u(d)$ for all $d \in \hat{D}$.

 $\mathcal{P}[X, Y]$ is the family of partial maps from X to Y.

Defining a topology on partial maps

Notation. For open set G, compact set K and I interval of the real line, denote by:

$$[G] = \{(D, u) : D \cap G \neq \emptyset\}, \quad [K : I] = \{(D, u) : u(D \cap K) \subset I\}.$$

Definition

The family of sets [G], [K : I] is a subbase for a topology on $\mathcal{P}[X, Y]$, denoted by τ_B , and called the generalized open-compact topology.

The Back topology

Theorem

Let X be a locally compact metric space. Then $(\mathcal{P}[X, Y], \tau_B)$ is separable and completely metrizable.

Proposition

The following are equivalent

- $(D_n, u_n) \rightarrow (D, u)$ for the τ_B topology;
- $D_n \rightarrow D$ in Kuratowski sense and for each $d_n \in D_n$ such that $d_n \rightarrow d$, then $u_n(d_n) \rightarrow u(d)$.

Setting for the basic theorem

X is a locally compact metric space. A continuous preference pair is

 (D, \succeq) with $D \subset X$ and \succeq preference relation on $D \times D$.

 $\mathcal{P}(X)$ is the space of preference pairs endowed with the topology of Kuratowski convergence.

 $\mathcal{P}[X,\mathbb{R}]$ is the space of partial maps endowed with τ_B .

Definition

A preference pair is locally non satiated if for every $d \in D$ and every ball S around d there is $c \in D \cap S$ such that $c \succ d$.

 $\mathcal{P}_{\text{lns}}(X)$ is the subset of the locally non satiated preference pairs.

The Back-Levin theorem

Theorem

There exists a continuous map $I : \mathcal{P}(X) \to \mathcal{P}[X, \mathbb{R}]$ such that $I(D, \succeq)$ is a utility function for \succeq .

Any such map is a homeomorphism between $\mathcal{P}_{lns}(X)$ and $l(\mathcal{P}_{lns}(X))$.

Remark The Back-Levin theorem applies to preorders that are not necessarily complete

Notation

Definition

A bornology \mathcal{B} on a metric space (X, d) is a family of subsets of X covering X, closed under taking finite unions, and hereditary. When for every $B \in \mathcal{B}$ there is $\delta > 0$ such that $B^{\delta} \in \mathcal{B}$, the bornology is called stable by small enlargements. If a bornology contains a small ball around each point, it is called local. A base \mathcal{B}_0 for a bornology \mathcal{B} is a subfamily of \mathcal{B} cofinal with respect to inclusion.

Important bornologies:

- \mathcal{F} : finite subsets of X;
- $P_0(X)$: nonempty subsets of X;
- \mathcal{B}_d : nonempty bounded subsets;
- \mathcal{K} : nonempty subsets of X with compact closure;
- \mathcal{B}_{tb} : nonempty totally bounded subsets;
- \mathcal{B}_{UC} : UC-sets of X.

Basic Definitions

Definition

A net (D_{γ}, u_{γ}) is $\mathcal{P}^{-}(\mathcal{B})$ -convergent to (D, u) if for every $B \in \mathcal{B}$ and $\epsilon > 0$:

- $D \cap B \subset D^{\epsilon}_{\gamma}$ eventually;
- $u(D \cap B_1) \subset [u_{\gamma}(D_{\gamma} \cap B_1^{\epsilon})]^{\epsilon}$ eventually, for all $B_1 \subset B$.

Notation $(D, u) \in \mathcal{P}^{-}(\mathcal{B}) - \lim(D_{\gamma}, u_{\gamma}).$

Definition

A net (D_{γ}, u_{γ}) is $\mathcal{P}^+(\mathcal{B})$ -convergent to (D, u) if for every $B \in \mathcal{B}$ and $\epsilon > 0$:

- $D_{\gamma} \cap B \subset D^{\epsilon}$ eventually;
- $\ \, {\it O}_{\gamma}(D_{\gamma}\cap B_1)\subset [u(C\cap B_1^{\epsilon})]^{\epsilon} \ {\it eventually, for all } B_1\subset B.$

Notation $(D, u) \in \mathcal{P}^+(\mathcal{B}) - \lim(D_{\gamma}, u_{\gamma}).$

First simple facts

- Taking Y as a one point set provides usual definitions of upper and lower convergences in the hyperspace of the space X. B the bornology of all sets corresponds to convergence in the Hausdorff metric topology, the bornology of bounded sets corresponds to convergence in the bounded Hausdorff topology. When X is locally compact, the bornology of the relatively compact sets provides Kuratowski convergence (Fell topology);
- If $(D, u) \in \mathcal{P}^{-}(\mathcal{B}) \lim(D_{\gamma}, u_{\gamma})$, then $(\hat{D}, \hat{u}) \in \mathcal{P}^{-}(\mathcal{B}) - \lim(D_{\gamma}, u_{\gamma})$ for any restriction (\hat{D}, \hat{u}) of (D, u). Dually, if $(D, u) \in \mathcal{P}^{+}(\mathcal{B}) - \lim(D_{\gamma}, u_{\gamma})$, then $(\hat{D}, \hat{u}) \in \mathcal{P}^{+}(\mathcal{B}) - \lim(D_{\gamma}, u_{\gamma})$ for any extension (\hat{D}, \hat{u}) of (D, u);
- If (D, u) ∈ P⁻(B) lim(D_γ, u_γ), then
 (D, u) ∈ P⁻(B̂) lim(D_γ, u_γ) for any bornology B̂ ⊂ B. The same happens with upper convergence.

Further simple facts

- Even with fixed domains, lower and upper convergence are different;
- A net might have more than one common limit. If the bornology is local, the limits have a common domain. If a net has a P(B) continuous limit, then the limit is unique;
- Inside the set of the continuous partial maps, P⁺(F) convergence of a net (D, u_γ) to (D, u) is equivalent to pointwise convergence of (D, u_γ) to (D, u) note:common domains;
- $\mathcal{P}^{-}(\mathcal{F})$ convergence of (D_{γ}, u_{γ}) to (D, u) is equivalent to having, for each $d \in D$, existence of $d_{\gamma} \in D_{\gamma}$ such that $(d_{\gamma}, u_{\gamma}(d_{\gamma})) \rightarrow (d, u(d))$.

Two preliminary results

Proposition

Given a bornology on Z and endowing $X \times Y$ of the box bornology $(\mathcal{B}, P_0(X)), \mathcal{P}(\mathcal{B})$ convergence of (D_{γ}, u_{γ}) to (D, u) is equivalent to set bornological convergence of the graphs in $X \times Y$.

Proposition

Convergence is topological when the bornology is stable for small enlargements. The restriction of $\mathcal{P}(\mathcal{B})$ convergence on partial maps with compact domain is topological.

An alternative way to describe the convergences

Proposition

Let \mathcal{B} be a bornology on X. A net (D_{γ}, u_{γ}) is $\mathcal{P}^{-}(\mathcal{B})$ - convergent to (D, u) if and only if for every $B \in \mathcal{B}$ and $\epsilon > 0$, the following two conditions hold:

• $D \cap B \subset D^{\epsilon}_{\gamma}$ eventually;

 $sup_{z \in D \cap B} \inf_{x \in B_d[z,\epsilon]} \rho(u(z), u_{\gamma}(x)) < \epsilon \ eventually.$

Proposition

Let \mathcal{B} be a bornology on X. A net (D_{γ}, u_{γ}) is $\mathcal{P}^+(\mathcal{B})$ - convergent to (D, u) if and only if for every $B \in \mathcal{B}$ and $\epsilon > 0$, the following two conditions hold:

• $D_{\gamma} \cap B \subset D^{\epsilon}$ eventually;

 $sup_{z \in D \cap B} \inf_{x \in B_d[z,\epsilon]} \rho(u(x), u_{\gamma}(z)) < \epsilon \ eventually.$

Uniform Continuity

Definition

Let \mathcal{B} be a bornology on X and $(D, u) \in \mathcal{P}[X, Y]$. (D, u) is uniformly continuous on the bornology \mathcal{B} if for every $B \in \mathcal{B}$ the map

 $u: D \cap B \to Y$

is uniformly continuous. (D, u) is strongly uniformly continuous on the bornology \mathcal{B} if for every $B \in \mathcal{B}$ for each $\epsilon > 0$ there is $\delta > 0$ such such that if $d(x, w) < \delta$ and $\{x, w\} \cap (B \cap D) \neq \emptyset$, then $\rho(u(x), u(w)) < \epsilon$.

- (D, u) is strongly uniformly continuous on \mathcal{K} if and only if u is continuous at each point of D;
- (D, u) is strongly uniformly continuous on B if and only if it is uniformly continuous on B, provided B is stable under small enlargements.

Another characterization of upper convergence

Proposition

Let $\mathcal B$ be a bornology on X and let (D, u) be strongly uniformly continuous on $\mathcal B$. TFAE

$$old \ (D_\gamma, u_\gamma)$$
 is $\mathcal{P}^+(\mathcal{B})$ - convergent to (D, u) ;

2 for every
$$B \in \mathcal{B}$$
 and $\epsilon > 0$:

•
$$D_{\gamma} \cap B \subset D^{\epsilon}$$
 eventually;

 $o \quad \sup_{z \in D_{\gamma} \cap B} \sup_{x \in B_d[z,\epsilon]} \rho(u(x), u_{\gamma}(z)) < \epsilon \ \text{eventually.}$

A further simplification on convergence

Theorem

Let \mathcal{B} be a bornology stable with respect small enlargement and let (D, u) be uniformly continuous on \mathcal{B} . TFAE:

- (D_{γ}, u_{γ}) is $\mathcal{P}(\mathcal{B})$ convergent to (D, u);
- **2** $\forall \epsilon > 0$ it holds that:
 - $D \cap B \subset D_{\gamma}^{\epsilon}$, eventually;

 - $\sup_{z \in D_{\gamma} \cap B} \sup_{x \in B_d[z,\epsilon]} \rho(u(x), u_{\gamma}(z)) < \epsilon$ eventually.

The same holds for the bornologies of the totally bounded sets and of the relatively compact sets.

A due theorem

Theorem

Let X be a locally compact metric space. Then the topology τ_B coincides with the topology of $\mathcal{P}(\mathcal{K})$ convergence.

The case of fixed domains

Theorem

Suppose (D, u_{γ}) , (D, u) are partial maps (with common domain). Then

- if (D, u_γ) uniformly converges to (D, u) on the bornology B, then it converges for the topology P(B);
- the converse is true provided (D, u) is strongly uniformly continuous on B.

Comparing two upper convergences

Remember $\mathcal{P}^+(\mathcal{B})$ convergence: for all $B \in \mathcal{B}$ and $\epsilon > 0$:

- $D_{\gamma} \cap B \subset D^{\epsilon}$ eventually;
- $\ \, {\it O}_{\gamma}(D_{\gamma}\cap B_1)\subset [u(C\cap B_1^{\epsilon})]^{\epsilon} \ \, {\rm eventually, \ for \ all \ } B_1\subset B.$

Compare with for all $B \in \mathcal{B}$ and $\epsilon > 0$

- $D_{\gamma} \cap B \subset D^{\epsilon}$ eventually;
- $\ \, {\it omega} \ \, u_{\gamma}(D_{\gamma}\cap B)\subset [u(C\cap B^{\epsilon})]^{\epsilon} \ \, {\it eventually}.$

The second one has the same structure as the definition in K. Back. Call it $\mathcal{A}^+(\mathcal{B})$ convergence.

Are they the same?

NO!

BUT

Theorem

Let X be a metric space, let \mathcal{B} be a bornology. Then on the space of the maps strongly uniformly continuous on bornology a sequence (D_n, u_n) converges for $\mathcal{P}^+(\mathcal{B})$ if and only if it converges for $\mathcal{A}^+(\mathcal{B})$.

Theorem

Let X be a metric space. Then on the space of the continuous maps a net (D_{γ}, u_{γ}) converges for $\mathcal{P}^+(\mathcal{B}_{tb})$ if and only if it converges for $\mathcal{A}^+(\mathcal{B}_{tb})$.

Final result

Theorem

Let X be a metric space, \mathcal{B} a bornology on X and suppose Y is totally bounded. Then on $\mathcal{P}[X, Y]$ a net (D_{γ}, u_{γ}) converges for $\mathcal{P}^+(\mathcal{B})$ if and only if it converges for $\mathcal{A}^+(\mathcal{B})$.

Acknowledgements

Thanks to Petar, thanks all my friends and colleagues! Meeting you is always a great pleasure!