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Chapter 1

Introduction

This thesis deals with an application of cooperative game theory to molec-
ular biology. Nowadays, the discovery of the structure of the DNA allows
studying those diseases which are of genetic origin, in order to try to find
the genes potentially responsible of the disease itself. One of most powerful
techniques is based on microarray data analysis. This technique provides
expression of the genes of the individuals. Then, the medical literature usu-
ally compares the data obtained by two different groups of people. One
group could be of individuals which are sane, and the other one of individ-
uals which have a specific disease. But this is not the only case: it is also
possible to compare two group of people having a similar, but not identical
disease (for instance two similar types of tumour). By comparing the two
sets of data, it can be seen when in the people affected by a specific disease
the genes are normally expressed or else abnormally expressed (either under
or over expressed).
But at this point the problem becomes how to handle the data. One of
the main points is that usually the genes observed in these processes are
very many. An estimation of the number of genes in the human genome is
around 30,000. It thus becomes necessary to develop tools in order to give a
meaning to the collected data. Of course, many statistical tools have been
developed to tackle the problem.

Recently, in the literature a different approach was proposed, based on
cooperative game theory (see [Moretti et al. (2007)]). The idea is to build,
from the data obtained by microarray technique, a suitable TU cooperative
game, where the players are the genes, and to use a power index to evaluate
the strength of each player (gene). If the model is correct, then it is reason-
able to expect that the genes ranked at the first places are more responsible
than others in the rise of the disease. It is worth mentioning that a very
recent paper based on this type of techniques (and other ones) has been
published on the journal Cancer, showing that the interest in this model
goes beyond the purely mathematical aspects.
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I will now briefly describe the contents of the various chapters.
The first chapter contains the background needed to enter in the subject. I
provide a short review of the main issues from molecular biology, trying to
give a simple idea of the microarray technique. Then, I briefly remind all
concepts from game theory needed for dealing with the model subsequently
developed.
In the second chapter some axiomatic characterization of two relevant in-
dices in the class of the microarray games is derived. The so called axiomatic
approach is quite used in cooperative game theory. It means the following.
As it is well known, there are some general ideas around the idea of solu-
tion for a cooperative game, but there is no a single, unifying concept of
solution, like for instance the idea of Nash-Cournot equilibrium in nonco-
operative game theory. Of course, having several solutions (providing quite
often rather different answers to the same problem) can be a little confus-
ing. A way to better understand the underlying deep meaning of a solution
concept, is to characterize the solution as the unique one, on a specific class
of games, fulfilling a (short and reasonable) list of properties. This approach
goes back at least to the pioneering papers by Nash and Shapley, one charac-
terizing a solution for the bargaining problem, the other one to characterize
one of the stars of this thesis, i.e. the Shapley value. This approach is inter-
esting since it allows comparisons among different solutions, by looking at
the different properties they fulfill. Thus in this chapter I consider the class
of the microarray games, in order to provide characterizations of the Shapley
and Banzhaf values. More precisely, starting from an older characterization
of the Shapley value (see [Moretti et al. (2007)]), a similar characterization
for the Banzhaf index is offered, and alternative characterizations for both
are also derived. We finally compare the two indices on a set of data taken
from the medical literature.
The third chapter provides the definition of a new family of indices, and
studies them from various points of view. The starting idea is the remark
that the Banzhaf and Shapley indices give a different weight to players in
the so called winning coalitions. Essentially, Shapley assigns to players of
the winning coalition S the power 1

|S| , while Banzhaf assigns to players of

the winning coalition S the power 1
2|S|−1

1. This causes different results in
ranking the genes. To have a better insight into the problem, it then makes
sense to consider new indices, in a sense intermediate between the two main
ones. In few words, the idea is to assign to the players belonging to the win-
ning coalition S the quantity 1

|S|a , for some natural number a. For a = 1 we
have Shapley’s index and as a grows we can think to approach the Banzhaf
value. Thus, I study this family of new indices. I give a formula for them
for general games, which at least in the case a = 2 is manageable. I also
provide a list of properties of the indices (leaving the attempt of finding an

1Given a finite set S I denote by |S| the number of its elements
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appropriate axiomatization to subsequent work) and I provide, for the case
a = 2 a fast way to calculate the index for weighted majority games, in the
spirit of algorithms available in the literature for the two main ones. A clas-
sical application to the study of the power of the nations in the EU council
shows the fact that the new 2-index provides an intermediate result with
respect the Shapley and Banzhaf in the following sense: the ratio between
the power of the weakest nation and the strongest one is approximatively
of 1

100 for the Shapley value, of 1
10 for the Banzhaf’s value. Our index gives

an intermediate result between them, and in this sense we believe it is more
“reasonable” than both the other ones. Applications of the new index to
microarray games are mostly performed in the last chapter.
The final chapter of the thesis deals with the introduction of variants of the
microarray game, in order to better differentiate the ranking between the
genes. In some experimental data it turns out that hundred of genes are
given the same power. This can be annoying, especially for the first ranked
genes: it is clear that having the first 100 genes, so to say, well separated
as far as their power index is concerned, can be of great interest. Thus,
by considering the proposed variant, we are led to consider weighted power
indices, already introduced in the literature, that are shown to do the job.
Having a group of one hundred genes well identified allows performing a
deeper analysis. I propose to consider a new model of game, derived from
the results of the (modified) microarray game, by considering a weighted
majority game, with a much restricted set of genes, selected by means of the
ranking of the indices.

It is clear that all of this must be considered, at the current state of the
art, purely experimental. Several facts do not have, at the present, strong
theoretical motivations. For instance, which index should be used to select
a group of genes to analyze further with the weighted majority game. Then,
how many genes should be used in the subsequent game. Of course, we must
take into account the complexity of the calculations. Fortunately for this
type of games the evaluation of the indices is much easier. In any case, I
apply the whole machinery to data sets taken from the available literature.
In particular, I consider data relative to colon rectal tumour, to neuroblastic
tumour, to lobular and ductal breast carcinomas, to colon tumour. Very
interestingly, a check made in the medical literature shows that some of the
selected genes by our methods in particular experiments are considered to
be of great importance from a medical point of view, in the onset of the
disease.

To handle all calculations needed to evaluate the indices in the various
experimantal data I have considered, I have developed a (simple) MATLAB
program. I have also developed a similar program performed in C++.

To conclude, I want to stress the following fact. On one side, the med-
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ical literature and recent studies seem to suggest that clusters of genes
could/should be considered when analyzing genetic responsibility in the on-
set of a disease. On the other side, however, it seems to be very important
as well to try to single out small groups of genes individaully responsible of
certain diseases. I think that the work done in this thesis suggests that the
game theoretic approach, with the use of classical indices, such as Shapley’s
and Banzhaf, or the other ones here introduced, and the weighted indices,
or also the use of the weighted majority games, serves well in the two ap-
proaches. On one side, the symmetric indices tend to group genes in small
families, and this can help when considering clusters of them, on the other
side the approach suggested in the last chapter seems to be promising in
trying to better differentiate them.

This in my opinion motivates the idea to develop further research in
this subject by using game heory, and to enhance interaction with schol-
ars in molecular biology and medicine to suggest new developments of this
approach.



Chapter 2

Preliminaries on Molecular

Biology and Game Theory

2.1 Brief review on the molecular biology of can-

cer and on the microarray technology

The first version of human genome sequence was published at the beginning
of this decade ([Lander et al. (2001)], [Venter et al. (2001)]). After the ini-
tial draft sequence, the information has been updated (International Human
Genome Sequencing Consortium, 2004). The availability of the sequence in-
formation has promoted development of a number of high-throughput tech-
nologies, including microarrays. The microarrays have played an important
role in changing the concept in biological research from investigation of single
genes to an omics approach ([Ge et al. (2003)], [Liu et al. (2006)]). Omics
studies are characterized by the use of high-throughput methods that pro-
duce large quantities of data. Microarrays can measure RNA, DNA, or
protein levels from cells or tissues on a genome-wide scale. For example,
DNA and RNA level alterations measured from the same sample provide
information about genes in which expression is corrupted due to increased
or decreased copy number. Copy number alterations represent an impor-
tant mechanism for cancer cells to promote or suppress the expression of
genes involved in cancer progression. Furthermore, genes deregulated in as-
sociation with high level amplifications have been linked to poor outcome
of cancer, representing potential drug targets ([Chin et al. (2006)]). Thus
the integrated array data can identify therapeutic targets which might then
provide alternative options to surgery and radiation therapy cancer.

2.1.1 Molecular biology of cancer

The ever increasing rate at which the different genomes are going to be
decoded has opened a new area of biological research, named functional ge-
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nomics, which is concerned with assigning biological function to the DNA
sequences. With the complete DNA sequences of many genomes already
available and the recent release of the first draft of the human genome, an
essential and formidable task is to define the role of each gene and under-
stand how the genome functions as a whole. Innovative approaches have
been developed to exploit DNA sequence data and yield information about
gene expression levels for entire genomes.
I now briefly review the basic genetic notions useful to understand the mi-
croarray experimental area. A gene consists of a segment of DNA which
codes for a particular protein, the ultimate expression of the genetic in-
formation. A deoxyribonucleic acid or DNA molecule is a double-stranded
polymer composed of four basic molecular units called nucleotides. Each
nucleotide comprises a phosphate group, a deoxyribose sugar, and one of
four nitrogen bases. The four different bases found in DNA are: adenine
(A), guanine (G), cytosine (C), and thymine (T). The two chains are held
together by hydrogen bonds between nitrogen bases, with base-paring oc-
curring according to the following rule: G pairs with C, and A pairs with T.
While a DNA molecule is built from a four letter alphabet elements, proteins
are sequences of twenty different types of amino acids. The expression of
the genetic information stored in the DNA molecule occurs in two stages:

1. transcription during which DNA is transcribed into messenger ribonu-
cleic acid or mRNA, a single stranded complementary copy of the
base sequence in the DNA molecule, with the base uracil (U) replac-
ing thymine;

2. translation during which mRNA is translated to produce a protein.
The correspondence between DNA’s four-letter alphabet elements and
protein’s twenty-letter basic units is specified by the genetic code which
relates nucleotide triplets to amino acids.

Proteins and nucleic acids are two of the main biochemical components
of the biological systems. As their full names imply, both deoxyribonucleic
acid (DNA) and ribonucleic acid (RNA) are chemically classified as nucleic
acids and their main function is to store and encode the information used to
synthesize proteins. Chromosomes, the molecular units of the genetic hered-
ity, are composed of DNA organized into genes, while RNA, a less stable
nucleic acid, is used to direct the process of protein synthesis. Under regu-
lated conditions, specific regions of DNA corresponding to particular genes
are transcribed into RNA that is then translated into proteins. Proteins are
often mainly known for their enzymatic role in biological catalysis, but they
are also needed for structure and support, movement and cellular commu-
nication. Following the discovery of the double helix structure of DNA by
Watson and Crick in 1953, molecular biologists and biochemists have been
interested in exploring the means by which nucleic acids encode information.
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The gradual accumulation of knowledge has revealed this process to be a
marvel of intricate complexity. DNA is chemically quite simple, composed of
variations of only four nucleotides. This repeating polymer is organized into
functional units (genes), and the collection of genes that make up an organ-
ism is referred to as its genome. With few exceptions, each cell of an organ-
ism contains a complete copy of its genome. The differences between indi-
vidual cells in a multicellular organism are due to the regulated interactions
and differential expression of particular genes. The protein products of gene
expression interact with each other, with existing proteins in the cell, and
often with the DNA itself to carefully control cellular conditions in a compli-
cated pathway of feedback loops. Nowadays, a revolutionary technique, the
microarray technology, allows for the collection of huge amount of informa-
tion concerning the function of human genes. Cancer is regarded as a genetic
disease that occurs due to sequential accumulation of genetic alterations in
oncogenes, tumour suppressor genes and stability genes. These alterations
cause abnormal activation or inactivation of a number of pathways resulting
in uncontrolled cellular grow ([Volgelstein and Kinzler (2004)]). Environ-
mental,viral, and chemical agents as well as physical substance can promote
carcinogenesis ([Peto (2001)]). The risk of cancer can be associated with
lifestyle and environmental factor even though hereditary factors also play a
role. The majority of tumours derive from a single progenitor cell. Within
a tumour, different subclones can have distinct alterations caused by simul-
taneous clonal expansion of different clones as a result of instability in a
tumour genome ([Weinberg (2006)]). Instability can be acquired during tu-
mour development or by inherited mutations occurring, for example, in genes
that are responsible for genome integrity. Therefore a person with inherited
mutations in critical genes becomes predisposed to cancer ([Fearon (1997)]).
Moreover, the accelerated cell proliferation in cancer allows mutations to
occur an increased rate. Cancer cells are characterized by acquired func-
tional capabilities such as limitless replicative potential and acquisition of
invasiveness and metastatic ability ([Hanahan and Weinberg (2000)]). Al-
though recent studies have illuminated genetic changes needed to transform
human cells ([Sjöblom et al. (2006)]), the exact number of changes required
is still under debate. To date, 367 human genes have been causally impli-
cated in cancer development either through mutation, copy number alter-
ation or rearrangement (www.sanger,uk/genetics/CGP/Census). Recently
cancer genes were mapped by a large-scale sequencing effort but the list of
cancer genes is still not complete.

2.1.2 Microarray technology

DNA microarray is based upon the mutual and specific affinity of comple-
mentary strands of DNA. This approach provides a quantitative measure-
ment of the gene expression (the amount of mRNA in a cell sample) for
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thousands of genes in the same experiment. Array size can range from a
small subset of 500 genes to a large pool of 30,000 genes. Once the pu-
rified samples have been prepared, they are individually spotted, usually
in duplicate, onto glass slides in a predetermined array. While these are
generally modified to promote the chemistry used in printing, these slides
appear identical to the microscope slides used in any basic biology lab. A
printed slide will contain two spots, each corresponding to a particular gene
present in the array. Microarrays are used to probe differences in gene ex-
pression. In order to highlight these differences, the use of proper controls
is vital. mRNA must be extracted from a normal control as well as the
experimental samples and purified for use in the array experiment. This
RNA can be obtained from a variety of sources including cell culture, tissue
samples from animal models or clinical patients, and histologically-archived
samples. Following mRNA extraction, reverse transcription PCR is used
to convert the RNA transcripts into DNA. The complete pool of DNA ob-
tained is representative of transcriptional events in the tissue source of the
RNA. The genes that were being actively transcribed in the sample will
have mRNA copies that should have been first purified and then copied into
DNA during the PCR step. The reverse transcription event for the control
and experimental mRNA are identical in every step except one, and it is this
step that enables differential gene expression to be determined. Detection of
the nucleic acid amount in the samples is performed using nucleotides typ-
ically labelled with fluorescent probes. In particular, nucleotides labelled
with Cy3, a green fluorescent dye, are incorporated into the control DNA
while nucleotides labelled with Cy5, a red fluorescent dye, are incorporated
into the DNA coming form the biological samples. After extraction and
labelling, both probes are mixed and allowed to hybridize onto the glass
slide. The term hybridization refers to the annealing of nucleic acid strands
from different sources according to the base-pairing rules described above.
Excess hybridization buffer is removed after washing following an overnight
incubation, and the slides are then ready to be subjected to quantification
using a specific scanner. Hybridization is the crucial step of this procedure:
many DNA regions immobilized on a small glass, plastic or nylon (probes),
bind to a complementary sequence from the sample under study labelled
with fluorescent dyes that flag their presence when exposed to a specific
wavelength of light. If one of the single-stranded DNA probes corresponds
to a single-stranded DNA gene printed on the slide, complementary inter-
actions between the two will affix the probe to the slide. Then a laser ray
activates the fluorescent dyes incorporated into the probe, and areas on the
slide with hybridized probes will be visible on the scanned image as red or
green spots. Gene spots with no affixed probe appear black. The red spots
correspond to genes expressed in the experimental sample while green spots
correspond to genes expressed in the control sample. If a gene is expressed
under both conditions, both probes will hybridize and the spot will appear



11

yellow. Sophisticated laser scanning equipment is used to import data into
image analysis software that can be quantify the gene expression on the
basis of light intensity of the corresponding probes. Ratios comparing Cy5
and Cy3 intensities can be used to quantitatively evaluate gene expression.
Under differing biological conditions, individual genes may be up-regulated
or down-regulated, and the fluorescent signal of the marker dyes reflects
these changes. Indeed, presently, the evaluation of the data generated from
this analysis is one of the most complicated tasks of this technology. The
array format definitely simplify the technical issues related to the investiga-
tion of the genome interactions, but the complexity of the data management
remains still high. Since a 10,000-gene array generates 10,000 data points
results must be validated through replication. A typical microarray experi-
ment may utilize also thirty slides and produce vast quantities of data, whose
analysis must generate a coherent picture of the system under investigation.
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Figure 2.1: Double-stranded DNA.

Figure 2.2: Hybridization.

Figure 2.3: DNA microarray.
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2.2 Brief review of game theory applied to gene

expression analysis

In literature we find many models for data analysis aimed at understanding,
from a matrix of gene expression data, the role of genes and their inter-
actions when some changes in the biological system occur. By using the
microarray technique to extract a gene expression data-set from samples, it
is possible to produce a map of all genes expressed in the samples. Since
many diseases, specifically tumours, are known to be of different classes, we
can think to differentiate tumours classes according to the expression profile
of the genes classified by a rule discriminating them. The classification rule
could be exploited both to predict the class of a new tumour sample of un-
known class by analyzing its gene expression profile, and to have meaningful
information to apply in the field of cancer research.
From the mathematical point of view, the most puzzling problem in apply-
ing any method to analyze gene expression data-sets, is to find a strategy
to reduce the number of genes under analysis: even if the definition of gene
itself is not precisely given, the average number of genes present in the hu-
man genome is estimated around 30,000. The choice of a particular method
to analyze microarray data about genes, is based on the possibility to select
genes (or clusters of genes) having the most relevant role in mechanisms that
cause biological changes (e.g. a tumour). As mentioned in the introduction,
in this thesis I will apply game theory (in particular coalitional games) to the
study of the interactions among genes, which can be considered, according
to a very recent model developed in the literature, the players in a partic-
ular game, called the microarray game. The characteristic function of the
microarray game picks up the information that can be successively exploited
to define the role of each gene in each possible coalition by applying suitable
solution concepts for cooperative games.

It is time to quickly introduce the basic concepts of game theory needed
to develop the subsequent ideas.

2.2.1 Preliminaries

I start by introducing notations and some basic game theoretical notions.
Let T be a (finite) set. To denote a subset S of T we use the notation S ⊆ T ;
S ( T means S ⊆ T and S 6= T ; S * T means that S ⊆ T is not true. Let
|T | denote the cardinality of a finite set T : we shall often use the convention
that |T | = t.
A coalitional game or characteristic-form game is a pair (N, v), where N
denotes the finite set of players and v : 2N → R is its characteristic function,
with v(∅) = 0. If the set N of players is fixed, we identify a coalitional game
(N, v) with the corresponding characteristic function v. We shall implicitly
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assume from now on that N = {1, . . . , n}. A group of players T ⊆ N is
called a coalition and v(T ) is called the value of this coalition. A coalitional
game (N,w) such that w : 2N → {0, 1} is called a {0, 1}-game. We shall
denote by W the class of all {0, 1}-games, where W ( G, being G the class
of all coalitional games.

Let C ⊆ G be a subclass of coalitional games. Given a set N of n players,
we denote by CN ⊆ G the class of coalitional games in C with N as set of
players.

The set GN is a vector space, of dimension 2n−1 (since all characteristic
functions are valued zero at the empty set). Two collections of games provide
interesting bases for the vector space. Let us introduce them. For each
R ⊆ N , let the unanimity game (N,uR) be defined as

uR(T ) =

{

1 if R ⊆ T

0 otherwise
.

Another collection of games providing a base, surely less meaningful from
the point of view of the interpretation as a game, but useful for purposes we
shall see later, is obviously given by the canonical base of the corresponding
Euclidean space. In terms of games, it is the collection of games vR such
that

vR(T ) =

{

1 if T = R

0 otherwise
.

A payoff vector or allocation x = (x1, . . . , xn) of a coalitional game (N, v)
is an n-dimensional vector describing the payoffs 1 of the players, such that
each player i ∈ N receives xi. An allocation x is called imputation if it
verifies the conditions:

1. xi ≥ v({i}) for all i = 1, . . . , n;

2.
∑

i xi = v(N).

A one-point solution (or simply a solution) for a class C of coalitional games
is a function ψ that assigns a payoff vector ψ(v) to every coalitional game
in the class, that is ψ : CN → RN , for every N .

The most famous solution in the theory of coalitional games is the Shap-
ley value, introduced by Shapley (1953). Such a solution can be described

1More precisely, we can speak about payoffs when the characteristic function v is given
the meaning of utility assigned to the calitions. More generally, the meaning of v induces
the corresponding meaning to the allocation. In this work almost always v will represent
the strenght of the coalitions, and thus an imputation represents the power (strenght) of
the players in the game.
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in several ways. I just give the Shapley value σ applied to game (N, v) ∈ GN

by means of its formula:

σi(v) =
∑

S∈2N\{i}

s!(n− 1 − s)!

n!
mi(v, S), (2.1)

where the quantity mi(v, S) = v(S∪{i})−v(S) is the marginal contribution
of player i to the coalition S. When v ∈ W, and is monotonic (i.e. S ⊇ T
implies v(S) ≥ v(T )) mi(v, S) can assume only the values zero and one:
when mi(v, S) = 1 we say that i is a swing for the coalition S.

Another one-point solution for coalitional games is the Banzhaf value,
introduced by Banzhaf (1965). The Banzhaf value β(v) of the game v ∈ GN ,
is defined as follows:

βi(v) =
∑

S∈2N\{i}

1

2n−1
mi(v, S), (2.2)

for each i ∈ N .
However, it must be noticed that the Banzhaf value is not an imputation.

It is quite possible to introduce different indices. An interesting analysis of
some of them is carried out in the paper [Monderer and Samet (2001)]. In
particular, a solution ψ is called a probabilistic value, if for each player i
there exists a probability measure pi on 2N\{i} such that

ψi(v) =
∑

S∈2N\{i}

pi(S)mi(v, S). (2.3)

Thus for instance, in the case of Shapley, for all i

pi(S) =
1

n
(n−1

s

) .

It should be noticed that pi(S) does not depend, from the Shapley and
Banzhaf indices, from the single player i. This property is clearly a symme-
try property.

Probabilistic values were characterized by Weber in [Weber (1988)], where
a formula too is offered in order to explicitly provide the coefficients in the
formula. I will show in a subsequent chapter that the indices I introduce
fulfill the conditions given by Weber, and that it is possible to provide a
formula for the probabilistic coefficient.

A probabilistic value which is symmetric, is called a semivalue. If the
probabilistic coefficient is positive for every i and S, it is called a regular
semivalue.

I will mainly consider two types of (cooperative) games. The first is very
well known: it is the class of the weighted majority games, a subclass of W,
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the class of the {0, 1}-games. Suppose there are n players and that n + 1
positive integers q, w1, . . . , wn are given. The associated weighted majority
game v is defined as:

v(S) =

{

1 if w(S) ≥ q

0 if w(S) < q
,

where w(S) =
∑

i∈S wi. Such a game will be denoted by [q;w1, . . . wn]. The
meaning of the coefficients is clear: each player i has assigned a (positive)
weight wi, and a quota q is necessary to get the majority. Thus a coalition S
is winning provided the sum of the weights of its players joins the quota. It is
clear that such a model well serves to analyze, for instance, what can happen
in a parliament where different parties are present. Here I will introduce a
weighted majority game related to the analysis of microarray data. The key
point will be how to assign weights to the genes. A less important point,
that however must be taken into account, is the fact that I will consider also
the case when a player in a game has zero weight. This is needed, since I will
consider averaged sums of (weighted majority) games, and in a single game
a player could be with no weight assigned, even if in the resulting game its
weight is positive.

It is time now to introduce the main class of games object of this thesis.
It is the class MN of Microarray games, where the set N of the players
is a given family of genes. Here I recall only the relevant facts for this
work, for more, especially for the motivations to consider such a model, see
[Moretti et al. (2007)].

Consider an (n ×m) matrix M = (mij), such that mij is either zero or
one, and such that for every j there is i with mij 6= 0. Given the column
m·j, j = 1, . . . ,m, define its support as the set supp m·j = {i : mij = 1},
and define the associated unanimity game vj generated by supp m·j, i.e.

vj(T ) =

{

1 T ⊇ suppm·j

0 otherwise
.

Then the microarray game associated to M = (mij) is defined as

v =
1

m

m
∑

j=1

vj .

It makes sense that, in studying a particular disease, the set N of the genes
is kept fixed, while the set of patients can vary. Thus microarray games
MN can be described by means of (n × m) matrices like above, with m
ranging over the natural numbers. Sometimes, for v ∈ MN , we shall use
the notation v = (v1, . . . , vj , . . . , vm) to stress the role of the generic patient
j in the game v.
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Example 2.2.1 Consider the matrix M ∈ {0, 1}3×3 such that

M =





0 1 1
1 1 1
0 0 1



 .

Then suppm·1 = {2}, suppm·2 = {1, 2} and suppm·3 = {1, 2, 3}. The
corresponding microarray game ({1, 2, 3}, v) is such that

v =
1

3

(

u{2} + u{1,2} + u{1,2,3}

)

.

It follows that v(∅) = v({1}) = v({3}) = v({1, 3}) = 0; v({2}) = v({2, 3}) =
1
3 ; v({1, 2}) = 2

3 ; v({1, 2, 3}) = 1. The Shapley value of the microarray
game ({1, 2, 3}, v) is σ(v) = ( 5

18 ,
11
18 ,

2
18), whereas the Banzhaf value is β(v) =

( 3
12 ,

7
12 ,

1
12 ).

For more on cooperative games, see for instance [Owen (1995)]
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Chapter 3

Axiomatic Characterization

for Microarray Games

As already mentioned in the introduction, it is particularly meaningful, in
cooperative game theory, to characterize solutions by means of a short list
of reasonable properties: it is the so called axiomatic approach. One of its
merits is to highlight the features of a solution with respect to other solu-
tions. This characterization becomes even more meamningful when consid-
ering specific classes of games, and not only the class of all games. Thus, it
meakes sense to do this for the class of microarray games.
In [Moretti et al. (2007)] it was proved that the Shapley value is the only
one point solution, on the class of microarray games, fulfilling a pool of rea-
sonable properties that we shall describe later. In this chapter I will give
another pool of properties characterizing the Banzhaf value. In doing this,
I also produce another alternative characterization of the Shapley value.

To start with, I introduce two classical properties, often used in this
context.

Property 1 Let v ∈ GN . The solution ψ has the dummy player (DP)
property, if for each player i ∈ N such that v(A∪{i}) = v(A)+ v({i}), then

ψi(v) = v({i}). (3.1)

In other words, the player i is useless in joining any coalition, so that the
solution does not assign to him more than what he is able to get by himself,
without making coalitions with other players.

Property 2 Let be given a finite set N of genes, and let π : N → N a
permutation on N . Given the game v, denote by π∗v the following game:
π∗(v(A)) = v(π(A)), and by π∗(x) = (xπ∗(1), . . . , xπ∗(n)). The solution ψ

has the symmetry (S) property on MN , if ψ(π∗(v)) = π∗(ψ(v)).

19
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This is a clear condition of symmetry between the players. It essentially
implies that if two players bring the same marginal utility when joining
coalitions, then the solution will assign the same to both.

Now, some properties, more specific for our context.
To start with, I introduce a new definition, motivated by an analogous one
given in [Kalai and Samet (1987)], for general cooperative games.

Definition 3.0.1 Let v ∈ MN . A coalition S ∈ 2N \{∅} such that for each
T ( S and each R ⊆ N \ S it holds that

v(R ∪ T ) = v(R), (3.2)

is said to be a partnership of genes in v.

We call relevance index for genes a one point solution solution F : MN →
RN with the property that F (v) ≥ 0 and F (v) 6= 0 for all v.1 Some inter-
esting properties for relevance indices, related to the concept of partnership
of genes, are the following.

Property 3 Let be given a finite set N of genes. The solution F has the
Partnership Rationality (PR) property on MN , if for every v ∈ MN

∑

i∈S

Fi(v) ≥ v(S) (3.3)

for each S ∈ 2N \ {∅} such that S is a partnership of genes in the game v.

Property 4 Let be given a finite set N of genes. The solution F has the
Partnership Feasibility (PF) property on MN , if for every v ∈ MN ,

∑

i∈S

Fi(v) ≤ v(N) (3.4)

for each S ∈ 2N \ {∅} such that S is a partnership of genes in the game v.

Property 5 Let be given a finite set N of genes. The solution F has the
Partnership Monotonicity (PM) property on MN , if for every v ∈ MN :

Fi(v) ≥ Fk(v)

for each i ∈ S and each k ∈ T , where S, T ∈ 2N \ {∅} are partnerships of
genes in v such that S ∩ T = ∅, v(S) = v(T ), v(S ∪ T ) = v(N), |S| ≤ |T |.

1Inequalities among vectors are intended coordinatewise.
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The (PR) property states that the total relevance of a partnership of
genes in determining the onset of the tumour in the individuals should not
be lower than the average number of cases of tumour enforced by the part-
nership itself.
The (PF) property states that the total relevance of a partnership of genes
in determining the tumour onset in the individuals should not be greater
than the average number of cases of tumour enforced by the grand coalition.
Finally, the (PM) property means the following: consider two disjoint part-
nerships of genes enforcing the same average number of cases of tumour in
the set of samples. If the genes outside the union of those two partner-
ships are irrelevant - that is they do not contribute in increasing the average
number of tumours - then genes in the smaller partnership should receive
a higher relevance index than genes in the bigger one, where the likelihood
that some genes are redundant is higher.

Property 6 Let be given a finite set N of genes. The solution F has the
Equal Splitting (ES) property on MN , if for every v1, . . . , vk ∈ MN

F (

∑k
i=1 vi

k
) =

∑k
i=1 F (vi)

k
. (3.5)

The equal splitting property (ES) clearly reminds the classical linearity
assumption introduced by Shapley in order to characterize its index. How-
ever it should be observed that in this context it looks much more intuitive,
due to the fact that it is required (only) for the class of games which are
averages of unanimity games.

Property 7 Let be given a finite set N of genes. The solution F has the
null gene (NG) property on MN , if for every v ∈ MN and for each null
gene2 i ∈ N

Fi(v) = 0. (3.6)

Clearly, this property is a simple adaptation of the dummy player prop-
erty to this context.

We address the interested reader to the paper [Moretti et al. (2007)] for
a deeper discussion of the meaning of the above properties, as well as for
the proof of the following theorem.

Theorem 3.0.1 Let be given a finite set N of genes. The Shapley value
on the class MN of microarray games is the unique relevance index which
satisfies the properties (PR), (PF), (PM), (ES) and (NG).

2The gene i is said to be a null gene if mij = 0 for all j.
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We now introduce some new properties, called symmetry, individual con-
sistency, average loss, and total loss, respectively.

Property 8 Let be given a finite set N of genes. The solution F has the
symmetry (S) property on MN , if for every game v ∈ MN , for every part-
nership S of v and every i, k ∈ S, Fi(v) = Fk(v).

Property 9 Let be given a finite set N of genes. The solution F has the
individual consistency (IC) property, if

Fi(u{i}) = 1 (3.7)

for each i ∈ N.

Property 10 Let be given a finite set N of genes. Let v = (v1, . . . , vm) ∈
MN , let S be a partnership of genes in v, let l ∈ {1, . . . , n}. Define a new
microarray game vSl in the following way:

1. for j such that vj(S) = 1

vj
Sl(T ) =

{

1 T ⊇ S ∪ {l}

0 otherwise
;

2. otherwise, vj
Sl = vj .

Then the solution F has the average loss (AL) property on MN , if for every
v, vSl as above

1

s

∑

i∈S

[Fi(v) − Fi(vSl)] = Fl(vSl) − Fl(v). (3.8)

On the other hand, F has the total loss (TL) property, if

∑

i∈S

[Fi(v) − Fi(vSl)] = Fl(vSl) − Fl(v). (3.9)

Note that both axioms (TL) and (AL) concern the effect of adding a gene
to a partnership in a microarray game v. Following the interpretation of
similar axioms introduced in [Laruelle, Valenciano (2001)], constant total
(respectively, average) loss here postulates that the total (respectively, av-
erage) loss of the genes in the partnership S equals the total (respectively,
average) gain of the gene l added to S. Even if these two properties are
remarkably close, they play a very different role in characterizing relevant
indices, as it will be shown by Corollary 3.0.1 and Theorem 3.0.2.
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To introduce the last property, we need some more notation. So, take a
game v ∈ MN , and let M be the generating matrix. Let l be a null gene in
v and k 6= l another gene. Consider a new matrix M lk defined by means of
its rows:

mlk
i· = mi· if i 6= l, mlk

l· = mk·.

We call vlk the game associated to the matrix M lk.

We now introduce another property.

Property 11 Let be given a finite set N of genes. The solution F has the
Pairwise Consistency (PC) property on MN , if for every v, vlk as above

Fk(v) = Fl(vlk) + Fk(vlk) (3.10)

Let us briefly comment on this property. The difference between the
game v, where l is a null player, and the associated game vlk is that in the
second one the gene l is substituted by the gene k. In other words, the null
gene is deleted in the new game, and the effect of the (non null) gene k is
“doubled”. Pairwise consistency thus requires that the power k has in the
game v is now split into the players k and l, in the new game. This makes
sense, since the player l in the old game had no power. Thus by changing
it with another player would not affect the total sum of the powers of the
genes. On the other hand, the power k had in the former game, should be
split among k and l, since the other players do play the same role in the two
games, and thus their relative power should not change.

Remark 3.0.1 It is not difficult to see that the game vlk has the following
form: for all S ⊆ N ,

1. if k ∈ S and l /∈ S, then vlk(S) = v(S \ {k});

2. otherwise vlk(S) = v(S).

Moreover, it is clear that given v = (v1, . . . , vm) and the associated game
vlk = (v1

lk, . . . , v
m
lk ), it holds that supp vj = supp vj

lk if mkj = 0, supp vj =

supp vj
lk ∪ {l} if mkj = 1.

It is straightforward to see that the following relations among the prop-
erties hold: (PM) and (NG) together imply (S), (PR) and (PF) together
imply (IC). The Banzhaf value satisfies the (NG), (ES), (PM), (PF) prop-
erties on the class of microarray games (see [Moretti et al. (2007)]). It does
not satisfy (PR). We shall prove that it satisfies also the (IC) and (AL)
properties.

The following is well known and easily seen to be true:
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Proposition 3.0.1 Given a coalition S, the Banzhaf and Shapley values
for the unanimity game associated to S do assign 0 to the genes not in S,
and 1

2s−1 ,
1
s respectively, to the genes in S.

Proposition 3.0.2 The Banzhaf value satisfies the properties (IC) and (AL).
The Shapley value satisfies (TL).

Proof Due to the fact that the Banzhaf value satisfies the equal splitting
property, it is enough to show (IC) on a single patient j. But this readily
follows from Proposition 3.0.1, applied to a single player coalition. As far
as the (AL) property is concerned, let us consider a game v = (v1, . . . , vm)
and a partnership S of the game. Once again, the formula can be checked
on the game vj and the only interesting case is when vj(S) = 1. Since S
is a partnership of the game, this is the case if and only if S = supp m·j.
Thus, for every i ∈ S, βi(v

j) = 1
2s−1 . Now, observe that the formula must

be checked only in the case when l /∈ S. Thus βi(v
j
Sl) = 1

2s for all i ∈ S∪{l}.
Thus

1

s

∑

i∈S

[βi(v
j) − βi(v

j
Sl)] =

1

s
· s(

1

2s−1
−

1

2s
) =

1

2s
.

On the other hand,

βl(v
j
Sl) − βl(v

j) =
1

2s
− 0.

About the Shapley value:

∑

i∈S

[σi(v
j) − σi(v

j
Sl)] = s(

1

s
−

1

s+ 1
) =

1

s+ 1
.

On the other hand,

σl(v
j
Sl) − σl(v

j) =
1

s+ 1
− 0.

This ends the proof.

Remark 3.0.2 Suppose φ is a relevance index on MN fulfilling (S) and
(AL). Given a coalition S, and a gene l /∈ S, consider the two unanimity
games uS and uS∪{l}. Then, for all i ∈ S it holds that

φi(uS∪{l}) =
1

2
φi(uS).

This readily follows from the following facts:

1. S is a partnership for uS ;
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2. (S) implies
φi(uS∪{l}) = φk(uS∪{l})

for all i, k ∈ S ∪ {l},
φi(uS) = φk(uS)

for all i, k ∈ S;

3. thus
φi(uS) − φi(uS∪{l}) = φl(uS∪{l}) = φi(uS∪{l}),

and we get the conclusion from the last equality.
Observe that a similar argument shows that if a relevance index φ satisfies
(S) and (TL) then

φi(uS∪{l}) =
s

s+ 1
φi(uS).

Theorem 3.0.2 Let be given a finite set N . Then a relevance index φ on
MN satisfies the properties (S), (ES), (NG) and (AL) if and only if there
is a > 0 such that φ = aβ.

Proof In Proposition 3.0.2 we have already seen that the Banzhaf value
satisfies the property (AL). (NG) and (ES) are obvious. (S) is shown in
[Moretti et al. (2007)]. The same proof shows that a positive multiple of
the Banzhaf value fulfills all properties above. Now we prove uniqueness,
modulo a positive factor, of the relevance index. Consider a relevance index
φ : MN → Rn satisfying the same properties.

We start by proving the statement for unanimity games. We claim that
there is a > 0 such that, for the unanimity game (N,uS), it holds that
φi(uS) = 0 ∀i /∈ S, and φi(uS) = a

2s−1 for i ∈ S. First of all, remember that
S is a partnership in the game uS ; then the first statement is immediate from
(NG); about the second: let S = {1}; then from (NG), φi(uS) = 0 ∀i 6= 1;
set φ1(uS) = a > 0. Now applying (AL), once with S = {1} and l = i, and
successively with S = {i} and l = 1, we see that

φ1(u{1,i}) + φi(u{1,i}) = φ1(u{1})

and
φ1(u{1,i}) + φi(u{1,i}) = φi(u{i}).

So that φ1(u{1}) = φi(u{1}) and the statement is proved for the one player
coalitions. The argument now goes by induction on the cardinality of the
coalitions. Suppose we have shown the claim for all coalitions of cardinality
less or equal to s, and consider a coalition of the form S ∪ {l}, with l /∈ S.
From Remark 3.0.2 we have that, for i ∈ S, φi(uS∪{l}) = 1

2φi(uS) = a
2s . On

the other hand, φl(uS∪{l}) = a
2s , by symmetry. Thus we have shown that
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φ = aβ on all unanimity games. Now the (ES) property allows us showing
the claim, and the proof is complete.

From the theorem we easily get the following Corollary:

Corollary 3.0.1 Let be given a finite set N . The Banzhaf value on the
class MN of microarray games is the unique relevance index which satisfies
the properties (IC), (S), (ES), (NG) and (AL).

A similar argument yields the following result:

Theorem 3.0.3 Let be given a finite set N . Suppose a relevance index φ
on MN satisfies the properties (IC), (S), (ES), (NG) and ((TL)). Then φ
is the Shapley value: φ = σ.

Note that properties (AL) and (TL) make the difference between the two sets
of axioms used in Corollary 3.0.1 and Theorem 3.0.3 (see [Laruelle, Valenciano (2001)]).
Both (AL) and (TL) have a clear meaning and are similarly compelling in
the context of relevance indices. (TL) goes in the direction to give more
relevance to single genes which have value 1 throughout the columns of MN

only occasionally, possibly due to chance. If MN is generated from real
data, a relevance index which satisfies the (TL) property faces the risk to
overestimate the role of genes whose expression value is more sensitive to
stochastic noise. On the other hand, a relevance index satisfying property
(AL) seems to go in the direction to flatten the roles of genes within and
between partnerships, especially in those data-sets where the set of genes is
fragmented in several partnerships of similar size. From a practical perspec-
tive, the results provided by Corollary 3.0.1 and Theorem 3.0.3 seems to
suggest to also look at relevance indices satisfying properties which involve
an ‘intermediate’ loss-gain balance.

We now provide another characterization of the Banzhaf relevance in-
dex, more in line with that one proposed in [Moretti et al. (2007)] for the
Shapley value. With respect to their list of properties, we know that the
only difference between the two indices is that Shapley satisfies the partner-
ship rationality, while Banzhaf does not. Thus the problem becomes how to
substitute (PR) in a way to single out the Banzhaf value. The idea is to use
the property of pairwise consistency.

Theorem 3.0.4 There is one and only one index φ : MN → Rn fulfilling
the properties (NG), (S), (ES), (IC), (PC). Then φ is the Banzhaf value:
φ = β.

Proof We must show that the Banzhaf value fulfills (PC), and that it is the
only one fulfilling the above list of properties. About the first point. Take a
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game v with matrix M , and set µj = | supp m·j|. Observe that, for a game
v ∈ MN , it holds that

mβk(v) =
∑

j:mkj=1

1

2µj−1 .

Now, take a game v and l, k as in (PC), and write Mlk = (m̂ij) for the
matrix associated to the game vlk. Set finally µ̂j = | supp m̂·j|. Observe
that µ̂j = µj if mkj = 0, µ̂j = µj + 1 if mkj = 1. It follows that

mβk(vlk) = mβl(vlk) =
∑

j:mkj=1

1

2µj
.

Since

mβk(v) =
∑

j:mkj=1

1

2µj−1 ,

the first part of the claim follows.
Now, let φ : MN → Rn be a relevance index fulfilling the above list of

properties. It is clear that, thanks to (ES), it is enough to show that φ = β
on unanimity games. To start with, observe that the (IC) property implies
that φk(u{l}) = βk(u{l}) for all k, l ∈ N . Next, observe that l is a null gene
in uS and thus we can apply (PC) and (S) to get:

φi(uS) = φi(uS∪{l}) + φl(uS∪{l}) = 2φi(uS∪{l}).

This allows to conclude the proof, since it implies, with a simple argu-
ment by induction, φi(uS) = βi(uS) = 1

2s−1 , while the null gene property
shows φi(uS) = βi(uS) = 0 for i /∈ S.

Remark 3.0.3 In the spirit of Theorem 3.0.2, it can be shown that if we do
not require (IC) in the above list of properties, the relevance index fulfilling
all other ones must be a positive multiple of the Banzhaf value.

The following section will enhance our claim, by comparing the results
given by the two indices on an interesting case study present in the literature.

3.1 Colon data analysis

Moretti et al. (2007) introduced a preliminary application of the Shapley
value for a microarray game defined on a tumour/normal data-set published
in [Alon et al. (1999)] 3 containing expression levels of a set N of 2000 genes

3http://microarray.princeton.edu/oncology/affydata/index.html
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measured using Affymetrix oligonucleotide microarrays for a set of 40 tumour
samples and a set of 22 normal samples, in total 62 samples from colon
tissues. In that application, after the preprocessing stage performed by
the Bioconductor4 specific software for microarray analysis, a discriminant
method was applied on tumour sample data in order to provide a boolean
expression matrix which finally produces the corresponding microarray game
(N, vc).

In this section we compare the results produced by the application of
the Shapley value φ(vc) with the results produced by the application of the
Banzhaf value β(vc).

Both the Shapley value φ(vc) and the Banzhaf value β(vc) are computed
using functions implemented in the programming language R (R Develop-
ment Core Team (2004)).

The Shapley value and the Banzhaf value of the 2000 genes are depicted
in Figure 1. For each k = 1, 2 . . . 2000, the number of genes which are among
the first k with highest Shapley value and, at the same time, among the first
k with highest Banzhaf value, is shown in Figure 2. If relevant genes are
selected as the first k genes with highest Shapley value, these genes usually
do not coincide with the first k genes with highest Banzhaf value, for each
k ∈ {1, . . . , 2000}, and an overlap of more than 50% is reached for k ≥ 260
(see Figure 2). The first 40 genes with the highest Banzhaf value show the
same value (approximately βi(vc) ≃ 4.54 10−14), or at least no differences
among these genes are detectable in terms of Banzhaf value. Most of their
relevance according to the Banzhaf value was due to the contribution of a
sample in which those 40 genes coincides with the support of the sample.
Figure 3 shows the effect of the sample with smallest support on the Banzhaf
value of top ranked genes. Note that all 40 top ranked genes according
to Banzhaf value are abnormally expressed in the sample with precisely
40 genes abnormally expressed (triangles point-down and diamonds on the
same vertical line for x = 40). Differently, the Shapley value is much less
affected by the contribution of samples with small support, as it is also
shown in Figure 3 (triangles point-up). As we noted earlier, the difference
is in the way the indices change as long as the cardinality of supports grow
in samples (i.e. columns of the binary matrix). This fact is also confirmed
by the comparison with ωi(vc), which is the ratio of samples such that gene
i takes value 1 in the Boolean matrix, for each gene i ∈ N . Figure 4 shows
the number of genes among the first m genes with highest Shapley value
(stair steps line labelled by ‘Shapley’) and the first m with highest Banzhaf
value (stair steps line labelled by ‘Banzhaf’) which are also among the first
m with highest ω(vc), for each m ∈ {1, . . . , 500}. The overlap of ω-based
ranking with the Shapley value ranking is systematically larger than with
the Banzhaf value ranking.

4http://www.bioconductor.org/
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Figure 3.2: Overlap of genes ranked by the Shapley value and the Banzhaf
value. For each k = 1, 2, . . . , 2000 on the x-axis, the cardinality of the
intersection between the set of k genes with highest Shapley value φ(vc) and
the set of k genes with highest Banzhaf value β(vc) is shown on the y-axis.
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Figure 3.3: Comparison among the 40 genes with highest Shapley value
(triangle point-up) and the 40 genes with highest Banzhaf value (triangle
point-down). Ten genes which are top ranked by both Shapley and Banzhaf
values are represented by diamond. Points on the same horizontal line be-
longs to the same gene. For each gene i represented on the y-axis, the
x-coordinate of a point on the yi-coordinate represents the cardinality of a
sample in which gene i is abnormally expressed.
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Figure 3.4: Genes are labelled on the x-axis. For each genem ∈ {1, . . . , 500},
the ym-coordinate of each point on the stair steps line labelled by ‘Shapley’
equals the cardinality of the intersection between the set of m genes with
highest Shapley value φ(vc) and the set of m genes ω(vc); the ym-coordinate
of each point on the stair steps line labelled by ‘Banzhaf’ equals the cardi-
nality of the intersection between the set of m genes with highest Banzhaf
value β(vc) and the set of m genes ω(vc).
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3.2 Some thoughts on Banzhaf versus Shapley

The two relevance indices are suitable to rank genes potentially responsible
of a genetic disease. In general, they will give different ranking. How can
we interpret this fact? In this section we briefly comment on this.

As it is clearly shown by the analysis of the previuos case study, the
differences in the two indices arise from the differences of their behavior
with respect to the unanimity games. So, what is the basic difference among
them, when dealing with this type of games? Of course, they do assign zero
to the players not belonging to the winning coalition, and the same amount
to the players in the winning coalition. The difference is in the way the
relevance index changes as long as the cardinality of the coalition grows.
For, in the case of Banzhaf, for a coalition with s elements the value is 1

2s−1 ,
while in the case of Shapley it is 1

s . Then we see that the value decreases
much more quickly for the Banzhaf value. This means that this relevance
index gives much more importance to genes appearing in winning coalitions
with few elements. Just to give an example, the contribution one gene has
in a patient where it is the only one abnormally expressed counts as being in
the support made by 10 elements in 10 patients as far as the Shapley value is
concerned, while 29 patients are needed for Banzhaf’s. Thus, we can expect
that a better ranking for Banzhaf with respect to Shapley roughly indicated
that the gene is abnormally expressed in patients having a relatively small
group of abnormally expressed genes.

Thus the great difference of behavior of the two indices in microarray
games is due to the fact that in the unanimity games, on one side the Shapley
index depends linearly with respect to size of the winning coalition, while
the Banzhaf index depends exponentially. Moreover, it can be noticed, by
analyzing experimental results, that the Banzhaf index is unable to make a
clear distinction between the various genes: in many cases the results divide
the genes in few big groups, and within a given group all genes have the
same index. So, it makes sense to consider what happens when we consider
indices intermediate between Shapley’s and Banzhaf’s. The aim of the next
chapter is to introduce new indices depending as a given power from the size
of the winning coalition.

I conclude by mentioning that the results of this chapter are taken from
the paper [Lucchetti et al.].
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Chapter 4

A Family of New Indices

In this chapter, I introduce a family of indices on the set GN , just defining
them on the set of the unanimity games, then extending them to the whole
space by linearity.

4.1 Definition and main properties of the indices

Definition 4.1.1 Let a be a natural number. We shall denote by σa and
call a-index the one point solution defined on the unanimity game uR as

σa
i (uR) =

{

1
ra if i ∈ R
0 otherwise

.

On a generic game v ∈ GN , σa is extended by linearity.

It is clear that for a = 1 the index is the Shapley index. Even if the
definition is given for all natural a, we mostly concentrate on the case a = 2.
Among other things, I shall provide a general formula for the indices. It
looks ugly, but at least for the case a = 2 can be simplified in a way that
its computational complexity should be of the order of Shapley’s index.
Moreover, I shall show that σa is a probabilistic index for all a. The results
are based on the following characterization of the probabilistic factor:

pi(S) = σa
i (vS∪{i}). (4.1)

In other words, in order to get the probabilistic coefficient, since the index
σa is defined on the base of the unanimity games, it is necessary to find
a formula of change of base. Before doing this, I prove that σa fulfills the
dummy property (DP)1.

1In [Weber (1988)] it is shown that an index is probabilistic if and only if it is linear,
fulfills the (DP) property and the coefficients in (4.1) are positive.
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Proposition 4.1.1 Let v be any game, and let φ be a power index fulfilling
the linearity, null player property and such that φj(u{j}) = 1 for all j, let i
be a dummy player in the game v. Then

φi(v) = v({i}), (4.2)

for all a.

Proof Every game v can be written as a linear combination of unanimity
games: v =

∑

T cTuT , where the coefficients cT are inductively defined as:
c{i} = v({i}) and, for T ⊆ N , t ≥ 2

cT = v(T ) −
∑

A⊂T

cA. (4.3)

It is clear that c{i} = v({i}); we now show that for every nonempty coalition
T not containing i the coefficient cT∪{i} is vanishing. Suppose T = {j}, with
j 6= i. Then

c{i,j} = v({i, j}) − c{i} − c{j} = v({i}) + v({j}) − c{i} − c{j} = 0.

Suppose now we have proved the claim for all coalitions A containing i of
size 2, 3, . . . , s−1 and consider a coalition of the form T ∪{i}, with t = s−1.
We have

cT∪{i} = v(T ) + v({i}) −
∑

A⊆T

cA −
∑

A:i∈A,A⊂T∪{i}

cA.

Thus

cT∪{i} = (v(T ) −
∑

A⊂T

cA − cT ) + (v({i}) − v({i})) −
∑

A:{i}⊂A,A⊂T∪{i}

cA = 0,

since the first parenthesis is vanishing by definition of the coefficient cT ,
and the last sum is made by vanishing coefficients because of the inductive
assumption. To conclude, use the linearity and the null player properties of
σa.

I prove now a formula which provides the way to write the vT games in
terms of the unanimity games.

Proposition 4.1.2 Let vT be the family of games associated to the canon-
ical base in R2n−1 and uA be the family of the unanimity games. Then the
following formula holds:

vT =

n−t
∑

k=0

(−1)k
∑

A:a=k,A∩T=∅

uA∪T . (4.4)
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Proof We need to prove that, for every coalition L, we have:

vT (L) =

n−t
∑

k=0

(−1)k
∑

A:a=k,A∩T=∅

uA∪T (L). (4.5)

We distinguish three cases:

1. L does not contain T ;

2. L = T ;

3. L ⊃ T .

Case 1. This case is simple: all terms on the right part of equation (4.1) are
vanishing, and the same is true for the left hand side;
Case 2. On the left we have 1, so we need to prove that the right hand side
of equation (4.1) sums up to 1. Again, this is easy to see: for k = 0 one has
the term uL(L) which is 1. For k > 0, i.e. if the coalition A is nonempty,
the term uL∪A(L) is vanishing;
Case 3. Finally, let us suppose L is of the form L = T∪H, with H nonempty
and not intersecting T . We need to prove that the sum on the the right hand
side of equation (4.1) is vanishing. The term vA∪T (H ∪ T ) is non vanishing
(whence is 1), only in the case when A ⊆ H. Thus the right hand side
becomes:

h
∑

k=0

(−1)k
∑

A:|A|=k,A⊆H

1.

The number of coalitions A such that |A| = k and A ⊆ H is
(h
k

)

. Thus

h
∑

k=0

(−1)k
∑

A:|A|=k,A⊆H

1 =
h
∑

k=0

(−1)k
(

h

k

)

= (1 − 1)h = 0.

The following proposition simplifies the above formula for symmetric in-
dices.

Proposition 4.1.3 Suppose, for each s = 1, . . . , n, positive numbers as are
given and suppose φ is a power index fulfilling the null player, linearity and
symmetry axioms, and assigning at to all non null players in the unanimity
game uT , for all coalitions T such that |T | = t. Then, for a player i and for
a coalition S such that i /∈ S, it holds:

φi(vS∪{i}) =
n−s−1
∑

k=0

(−1)k
(

n− s− 1

k

)

as+1+k. (4.6)
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Proof We can apply Proposition 4.1.2. Since the number of coalitions of
size k, k = 0, 1, . . . , n− s− 1, contained in N and not intersecting S ∪{i} is
(n−s−1

k

)

, the thesis follows.

Theorem 4.1.1 Let φ be an index fulfilling the symmetry, null player, lin-
earity axioms and assigning as to all non null players in the unanimity
game uS, for all coalitions S such that |S| = s, where a1 = 1 and as > 0 for
s = 2, . . . , n. Then φ fulfills the following formula:

φi(v) =
∑

S∈2N\{i}

(

n−s−1
∑

k=0

(−1)k
(

n− s− 1

k

)

as+k+1

)

mi(S). (4.7)

Proof Writing

φi(v) =
∑

S∈2N\{i}

pi(S)mi(v, S),

it holds that:

pi(S) = φi(vS∪{i}).

Now use Proposition 4.1.3 to conclude.

Remark 4.1.1 Of course, the above formula can be checked on Shapley and
Banzhaf indices. In the second case, as+k = 1

2s+k−1 and the verification that

the formula provides the probabilistic factor 1
2n−1 for all s is immediate. A

little more involved is Shapley’s case. To show that equation (4.7) provides
the coefficient relative to Shapley index, one can appeal to the following
general formula:

l
∑

k=0

(

l

k

)

(−1)k

z + k
=

l!

z(z + 1) . . . (z + l)

Thus, it is easy to get the formula just putting l = n−s−1 and z = s+1.

Theorem 4.1.2 The a-index σa is a regular semivalue for all a = 1, 2, . . . .
The 2-index fulfills:

σ2
i (v) =

∑

S⊆2N\{i}

(

s!(n− 1 − s)!

n!

n
∑

k=s+1

1

k

)

mi(S). (4.8)
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Proof From the formula:

l
∑

k=0

(

l

k

)

(−1)k

z + k
=

l!

z(z + 1) . . . (z + l)
,

we easily get, by differentiating with respect to z, that

l
∑

k=0

(

l

k

)

(−1)k

(z + k)2
=

l!

z(z + 1) . . . (z + l)

l
∑

k=0

1

z + k
.

With the choice of l = n − s − 1 and z = s + 1 we then get the formula of
equation (4.8). To prove that the index is probabilistic for all a, since a power
index φ is a probabilistic value provided it is linear, fulfills the null property,
assigns v({i}) to every dummy player i and is such that all coefficients of
mi(S) in equation (4.7) are positive (see [Weber (1988)]), what we need is
to prove the last property. To see this, we see that the coefficients of σa

can be obtained, when as = 1
s , by differentiating a − 1 times, and taking

into account that there is a change of sign (as shown when calculating the
coefficient of σ2). Thus, what we need is to show that all even derivatives
of l!

z(z+1)...(z+l) are positive, while the odd ones are negative. To see this, we
use the fact that, given functions fi, i = 1, . . . , l, the derivative

(f1 . . . fl)
(n) =

∑

k1,...,kl

(

n

k1, . . . , kl

)

f
(k1)
1 . . . f

(kl)
l ,

where the summation is taken over all nonnegative integers k1, . . . , kl such
that their sum equals n. Now, setting fi(z) = 1

z+i−1 , it is easy to see that if

n is odd the term f
(k1)
1 . . . f

(kl)
l is negative, otherwise it is positive.

4.2 An application to a microarray game

I now provide an application of the σa indices to a microarray game. I
consider, like in Lucchetti et al. (2008) [Lucchetti et al.], the microarray
game defined on a tumour/normal data set published in [Alon et al. (1999)]2

and containing the expression levels of a set of 2000 genes measured using
Affymetrix oligonucleotide microarray for a set of 40 tumour samples and 22
normal samples. As already remarked at the end of the previous chapter, the
Banzhaf and Shapley indices provide different ranking and, moreover, the
40 genes with the highest Banzhaf value showed the same value, while the
Shapley index allows a more refined analysis. In general, it can be expected

2microarray.princeton.edu/oncology/affydata/index.html



40

that the index of Banzhaf practically counts as zero the contribution of
players of a winning coalition made by a large number of players. So that
it is interesting to see what happens when using also the σa indices. We
consider, in the following figures, the case of the genes common, among
the first 100, to the rankings given by different indices. By the way, it
is interesting to observe that this can be considered a good result, since
there could be the suspect that by changing the index the ranking could be
dramatically changed. Even more, when excluding the Banzhaf index the
number of common genes significantly increases. Some more comment is
below the figures.

4.2.1 Figures
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Figure 4.1: Comparison among the 73 genes with highest Shapley value and
σ2 value. Points on the same vertical line belong to the same gene.
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Figure 4.2: Comparison among the 56 genes with highest σ2 value and σ3

value. Points on the same vertical line belong to the same gene. We can
observe that σ3 tends to concentrate the genes in two strips, while σ2 still
maintains a degree of differentiation.
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Figure 4.3: Comparison among the 56 genes with highest Shapley value,
σ2 value, σ3 and Banzhaf value. Points on the same vertical line belong to
the same gene. It is possible to appreciate the fact that the Shapley value
makes possible to best differentiate genes. On the contrary, the Banzhaf
value divides the genes in only two groups. The indices σ2 and σ2 have
intermediate behavior.
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4.3 Generating functions for computing power in-

dices

In this section I present a combinatorial method based on the generating
functions to compute (exactly) the power indices. The classical procedures
to compute the power indices are based on the enumeration of all coalitions.
If the input size of the problem is n, the function which measures the worst
case running time for computing is O(2n). With the generating functions we
can build algorithms to obtain these power indices with polynomial space
complexity.

4.3.1 Formal power series

The formal power series are called formal because we ignore problems of
convergence (see Stanley 1986) and we use them to have an algebraic rep-
resentation of numeric successions. The formal geometric series are:

f(x) =
∑

n≥0

fnx
n = f0 + f1x+ . . . fnx

n,

where fn is a sequence on a field 3. xn is only a symbol that we use to point
to the place of an element in a sequence.
If fn is defined on the field R, f(x) is called generating functions.

A generating function approach to binomial coefficients may be obtained
as follows.

Let be S = {x1, x2, . . . , xn} a set of n elements in which x1, x2, . . . xn are
independent indeterminates. It is an immediate consequence of the process
of multiplication that

(1 + x1)(1 + x2) . . . (1 + xn) =
∑

T⊆S

∏

xi∈T

xi.

If T = ∅ we obtain 1. If xi = x for all i ∈ 1, 2, . . . n, we have

(1 + x)n =
∑

T⊆S

∏

x∈T

x =
∑

T⊆S

x|T | =
∑

k≥0

(

n

k

)

xk.

4.3.2 Generating Function for the Banzhaf Power Index

In this section I will consider the problem of efficiently compute the indices
in the case of weighted majority games. For the special class of weighted
majority games, the computational complexity is much lower, and thus the
indices can be easily calculated for games with more than fifty players.

3To use formal series is enough that fn is defined in a half ring.
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The first result present in literature goes back to Brams-Affuso that used
generating functions to compute the Banzhaf index in the case of weighted
majority games. Now I briefly introduce and develop the idea, in order to
apply it to the index introduced in the previous chapter.

For the weighted voting game [q;w1, . . . , wn] I shall denote by w(S) the
total weight of the coalition S ⊆ N :

w(S) =
∑

i∈S

wi.

I denote by bk the number of coalitions whose total weight is k. I want
to find the generating function of the sequence {bk}k≥0 because I need these
coefficients to compute the number of swings of the players i. These swings
for the player i are:

ηi(v) = |{S /∈ W : S ∪ i ∈ W}| =

q−1
∑

k=q−wi

bik,

where bik is the number of coalitions S with i /∈ S whose weight is k and W
gives us the number of winning coalitions.

Proposition 4.3.1 (Brams-Affuso)
Let [q;w1, . . . , wn] be a weighted voting game. The generating function of
the number bik of coalitions S such that i /∈ S and w(S) = k, is given by:

f(x) =
∏

j 6=i

(1 + xwj). (4.9)

Proof Let W = {w1, w2 . . . , wn}. We consider the generating function

(1 + xw1)(1 + xw2) . . . (1 + xwn) =
∑

V ⊆W

∏

wi∈V

xwi =

=
∑

V ⊆W

(x
P

wi∈V wi) =

=
∑

k≥0

bkx
k.

where bk denotes the number of subsets of weights from W having total sum
k. To obtain bik we delete the factor (1 + xwi).

If k =
∑n

i=1wi 0 ≤ k ≤ w(N):

f(x) =
n
∏

j=1

(1 + xwj ) =

w(N)
∑

k=0

bkx
k. (4.10)
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where bk is the number of coalitions S ⊆ N such that w(S) = k that is the
number of subsets S such that w(S) = k ∀k = 0, 1, . . . , w(N). There is only
one subset (the empty set) such that w(S) = 0 , so b0 = 1.
How can we compute bk in (4.10)?
We build the generating function through a sequence of multiplications.

f(x) =

n
∏

j=1

(1 + xwj),

= (1 + xw1)

n
∏

j=2

(1 + xwj ),

= (1 + xw1)(1 + xw2)

n
∏

j=3

(1 + xwj),

= (1 + xw1 + xw2 + xw1+w2)

n
∏

j=3

(1 + xwj).

When we reach the step r with r = 1, 2, . . . , n, we can write the polynomials
in this way:

1 + b
(r)
1 x+ b

(r)
2 x2 + · · · + b(r)w xw

with b
(n)
k = bk∀k.

Now we can write f(x) :

f(x) = (1 + b
(1)
1 x+ · · · + b(1)w xw)

n
∏

j=2

(1 + xwj) =

= (1 + b
(2)
1 x+ · · · + b(2)w xw)

n
∏

j=3

(1 + xwj) =

. . .

= 1 + b
(n)
1 x+ · · · + b(n)

w xw,

in which w = w(N).

We compute now bk.

Let b
(0)
k = 0 ∀k 6= 0 e b

(r)
0 = 1. The numbers b

(r)
k , at the step r, can be

computed by means of the formula:
{

b
(r)
k = b

(r−1)
k + b

(r−1)
k−wr

se k = wr, . . . sr,

b
(r)
k = b

(r−1)
k altrimenti

(4.11)

where sr = w({1, 2, 3 . . . , r}).
After n iterations, we will have all the coefficients bk.



46

We can now use bk to find the number of swings of each player i. To do
that we look for all k such that q − wi ≤ k < q, the number bik of coalitions
S such that i /∈ S and we add on k. To obtain the numbers bik we delete the
factor (1 + xwi) in the generating function (4.10):

f(x) = (1 + bi1x+ bi2x
2 + . . . bivx

v)(1 + xwi) = 1 + b1x+ · · · + bwx
w,

where v = w − wi. The bik are expressed by the formula:

bik = bk − bik−wi
∀k = 1, 2, . . . , v (4.12)

where a coefficient with a negative index is zero.
The number of swings for the player i is:

ηi =

q−1
∑

k=q−wi

bik

and βi = ηi

2n−1 is the Banzhaf power index of the player i.

4.3.3 Generating function for the Shapley index

David G.Cantor used generating functions to compute the Shapley index for
large voting games. The Shapley index in this case can be written in the
following fashion:

σi(v) =
∑

S /∈W :S
S

i∈W

s!(n− s− 1)!

n!
=

n−1
∑

j=0

j!(n − j − 1)!

n!





q−1
∑

k=q−wi

ai
kj



 ,

(4.13)

where ai
kj is the number of ways in which j players, different from player

i, can sum up their weights to (exactly) k.

Proposition 4.3.2 (Cantor)
Let [q; , w1, w2, . . . wn] be a weighted voting games. The generating function
of the number ai

kj of coalitions S of j players with i /∈ S e w(S) = k, is
given by:

∏

j 6=i

(1 + zxwj). (4.14)

Proof Let W = {w1, w2, . . . wn} the set o the weights of all players. We
consider the following generating function:

(1 + zxw1) . . . (1 + zwwn) =
∑

T⊆W

(

z|T |x
P

wi∈T wi

)

=
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=
∑

k≥0

∑

j≥0

akjx
kzj,

where akj is the number of coalitions of j players whose weight is k. To
obtain ai

kj we delete the factor (1 + zxwi).

The numbers akj are a vector whose size is (w + 1)(n + 1) and we can
compute them by the formula:

a
(0)
kj =

{

1 per j, k = 0

0 otherwise

e, per r = 1, 2, . . . , n j = 0, 1, . . . , n k = 0, 1, . . . , w(N)

a
(r)
kj = a

(r−1)
kj + a

(r−1)
k−wr,j−1, (4.15)

If an index is negative, its coefficient is zero.

The power index of the player i is obtained by the number of swings of
j players with k votes.

ai
kj = akj − ai

k−wi,j−1, (4.16)

per i = 1, 2, . . . , n j = 0, 1, . . . , n− 1 k = 0, 1, . . . , w(N) − wi.
The power index of each player is given by:

σi =
n−1
∑

j=0

j!(n − 1 − j)!

n!

q−1
∑

k=q−wi

ai
kj. (4.17)

4.3.4 An algorithm for calculating the indices for weighted

majority games

In this section we provide a formula for calculating in a fast way the indices
in the case of weighted majority games, in the spirit of the previous section.
Let ai

kj count in how many ways the sum of the weights of j players different
from i, can give k. Then the following proposition holds.

Proposition 4.3.3 Let φ be an index fulfilling the symmetry, null player,
linearity axioms and assigning as to all non null players in the unanimity
game uS, for all coalitions S such that |S| = s, where a1 = 1 and as > 0 for
s = 2, . . . , n. Then the following formula holds:

φi(v) =

n−1
∑

j=0

(

n−j−1
∑

k=0

(−1)k
(

n− j − 1

k

)

aj+k+1

)





q−1
∑

k=q−wi

ai
kj



 . (4.18)
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Proof A coalition S made by j players different from i is not winning and
such that S ∪{i} is winning if and only if the sum k of weights of players in
S lies between q−wi and q− 1. Thus the number of swings for the player i
provided by coalitions of size j is exactly ai

kj. The corresponding coefficient
of such a coalition S is

pi(S) =

n−j−1
∑

k=0

(−1)k
(

n− j − 1

k

)

aj+k+1.

Therefore the formula follows.

Theorem 4.3.1 The 2-index σ2 satisfies the following formula, valid for a
weighted majority game:

σ2
i (v) =

∑

S /∈W :S
S

i∈W

s!(n− s− 1)!

n!

n
∑

k=s+1

1

k
=

n−1
∑

j=0





j!(n − j − 1)!

n!

n
∑

h=j+1

1

h









q−1
∑

k=q−wi

ai
kj



 ,

(4.19)

Proof It readily follows from equations (4.8) and (4.18).

Thus the problem becomes now to evaluate the term ai
kj.

We have seen that the power index relative to the player i can be cal-
culated by counting the number of swings of j players with weight equal to
k.

ai
kj = akj − ai

k−wi,j−1, (4.20)

for i = 1, 2, . . . , n; for all j = 0, 1, . . . , n − 1 and k = 0, 1, . . . , w(N) − wi.
The (4.20) is repeated for each player.

Remark 4.3.1 The above formula applies also when some player has null
weight. As already mentioned somewhere else, one reason why considering
players with null weight is that sometimes it can be useful, like in microarray
games, to consider averages of weighted games. In this case it can happen
that in one game a player does not have positive weight. We have already
introduced a simplified formula for Banzhaf’s index: in that case it is not
necessary to count the elements of the coalition. We can write:

βi(v) =
∑

S /∈W :S
S

i∈W

1

2n−1
=

1

2n−1

q−1
∑

k=q−wi

ai
k, (4.21)
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where ai
k is the number of coalitions of total weight k, not containing i. In

this case however the formula must be changed in the following way:

a
(0)
k = 0 if k 6= 0, a

(0)
0 = 1, a

(r)
0 = a

(r−1)
0 if wr > 0, a

(r)
0 = 2a

(r−1)
0 if wr = 0,

(4.22)

a
(r)
k = a

(r−1)
k + a

(r−1)
k−wr

, (4.23)

where a negative index implies that the corresponding coefficient vanishes.
Then, the coefficient ai

k can be easily calculated as:

ai
k = ak − ai

k−wi
, (4.24)

for i = 1, 2, . . . , n; for all j = 0, 1, . . . , n− 1 and k = 0, 1, . . . , w(N) − wi.
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4.4 An application of the indices: the EU Council

In this section we present an application of the indices to a very classical
setting: the EU Council.

The treaty of Nice has established, after long discussions, a new weight-
ing system for the European council. This is of course one of the most
natural situations where the power indices give useful information. Here we
compare the results provided by Banzhaf, Shapley, σ2.
The set N of players is given by:

N = {Malta,Latvia,Cyprus,Slovenia,Estonia,Luxembourg,Finland,Denmark,

Slovakia, Ireland,Lithuania,Sweden,Austria,Bulgaria,Belgium,CzechRepublic,

Greece,Hungary,Portugal,TheNetherlands,

Romania,Spain,Poland,Germany,France, Italy,United Kingdom}.

The game is defined as

v = [q; 3, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 10, 10, 10, 12, 12, 12, 12, 12, 13, 14, 27, 27, 29, 29, 29, 29].

The quota q is q = 255. In the next table are displayed the following indices:
Banzhaf (B), Shapley (S) and σ2 of each state. We also show the ratio of
the values (B (i)), (S (i)), (σ2(i)) compared to the value of the state with
the lower power index, Malta (MT) .



51

STATES WEIGHTS B S B(i)/B(MT) S(i)/S(MT)

GE 29 0,032688 0,086738 0,02797 8,260800 10,606260 9,815720

FR 29 0,032688 0,086738 0,02797 8,260800 10,606260 9,815720

IT 29 0,032688 0,086738 0,02797 8,260800 10,606260 9,815720

UK 29 0,032688 0,086738 0,02797 8,260800 10,606260 9,815720

SP 27 0,031164 0,079975 0,025999 7,875660 9,779280 9,123380

PL 27 0,031164 0,079975 0,025999 7,875660 9,779280 9,123380

RO 14 0,017889 0,039937 0,013476 4,520850 4,883468 4,729164

NL 13 0,016691 0,036825 0,012476 4,218090 4,502940 4,378370

BE 12 0,015475 0,034068 0,011555 3,910791 4,165810 4,055050

CZ 12 0,015475 0,034068 0,011555 3,910791 4,165810 4,055050

GR 12 0,015475 0,034068 0,011555 3,910791 4,165810 4,055050

HU 12 0,015475 0,034068 0,011555 3,910791 4,165810 4,055050

PT 12 0,015475 0,034068 0,011555 3,910791 4,165810 4,055050

SE 10 0,012989 0,028193 0,00961 3,282540 3,447420 3,372390

AU 10 0,012989 0,028193 0,00961 3,282540 3,447420 3,372390

BG 10 0,012989 0,028193 0,00961 3,282540 3,447420 3,372390

FI 7 0,00916 0,019606 0,006721 2,314890 2,397410 2,358600

DK 7 0,00916 0,019606 0,006721 2,314890 2,397410 2,358600

SK 7 0,00916 0,019606 0,006721 2,314890 2,397410 2,358600

IR 7 0,00916 0,019606 0,006721 2,314890 2,397410 2,358600

LT 7 0,00916 0,019606 0,006721 2,314890 2,397410 2,358600

LV 4 0,005251 0,011042 0,003813 1,327020 1,350210 1,338030

CY 4 0,005251 0,011042 0,003813 1,327020 1,350210 1,338030

SLO 4 0,005251 0,011042 0,003813 1,327020 1,350210 1,338030

ES 4 0,005251 0,011042 0,003813 1,327020 1,350210 1,338030

LU 4 0,005251 0,011042 0,003813 1,327020 1,350210 1,338030

MT 3 0,003957 0,008178 0,00285 1,000000 1,000000 1,000000

 σ
2

  σ
2(i) / σ

2( MT )
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As a comment, we can see that σ2 is intermediate between Shapley, which
enhances the power of more powerful players, and Banzhaf, which tends to
diminish that power. in this sense, σ2 looks like a compromise between the
two.



Chapter 5

Weighted Indices

Looking at the data elaborated in the previous chapters, we can notice that
the power indices usually have difficulties in distinguishing the genes. This
can be structural, in that few samples versus so many genes can cause the
fact that several of them could be grouped in families of symmetric players.
On the other hand, it is quite possible that round off errors do not allow
evaluating very small differences. By elaborating some (real) data it turned
out that some patients presented around 200 genes abnormally expressed.
In such a case, the Banzhaf index is simply useless, since it attaches to each
gene approximatively the value 1

2200 . I.e., zero for any computer. This means
that actually the patient does not provide useful data, since it considers all
genes as null genes. This in principle cannot be considered totally useless: in
some sense, it indicates that the patient could be considered not meaningful
for the analysis, since its abnormally expressed genes are too many. But
on the other hand, especially when treating data with few patients, it is
of interest to avoid the risk of having a partition of the set of genes made
by few elements (i.e. few subsets with a large number of genes). For this
reason, it is interesting to try to better differentiate the contribution that
each gene could give to the disease.

Thus, it seems to be a promising idea to try to differentiate the genes,
by considering indices better differentiating the contribution of the players.
This in some sense goes in the opposite direction with respect to what we
did in the previous chapter, but it is natural to think that both approaches
make sense, for several reasons: one of them, the great variety of data- sets
available in literature. It is conceivable that having the data of many patients
it is enough to use the Shapley to differentiate the genes in a significant way,
while with few data probably different indices are needed. Moreover, the
data available are not homogeneous: actually sometimes patients do present
very many abnormally expressed genes while in other cases do not. In short,
the idea is that the great variety of the data set justifies the idea of having
different indices.

53
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This chapter thus deals with the introduction of a variant of the microar-
ray game, in order to use the so called weighted indices. Then, we consider
a new model of game, derived from the results of the (modified) microarray
game. In short, we consider a weighted majority game, by considering a
much restricted set of genes, selected by means of the ranking of the indices.
It is clear that all of this must be considered, at the current state of the
art, only experimental. Several facts do not have, at the present, strong
theoretical motivations. For instance, which index should be used to select
a group of genes to analyze further with the weighted majority game. Then,
how many genes should be used in the subsequent game. Of course, we
must take into account the complexity of the calculations. Fortunately, as
we have seen, for this type of games the evaluation of the indices is much
easier, thanks to the algorithm presented above. However, it makes no sense,
and it is impossible, to consider thousand of players. Furthermore, it is not
clear how to attach weights to the players, and it is not clear too what should
be the majority quota.
Despite the above remarks, we believe that these data are interesting, at
least for one strong reason: it seems that there is some form of stability on
the experimental results. Looking at the first 100 ranked genes with respect
to the various indices, we find that a great percentage of them are present in
all ranking made the different indices (with the exception of Banzhaf’s, for
the reason explained above that it does not differentiate enough the genes).
Thus we shall perform the subsequent weighted majority game with the
genes we find in the intersection of the rankings made by the indices.
Finally, a check made in the medical literature showed that some of the
selected genes by our methods in particular experiments are considered to
be of great importance from the medical point of view, in the onset of the
considered disease. Thus as a conclusion we believe that further interactions
with researchers in medical groups should be enhanced in order to suggest
new development of this approach.

5.1 An extended version of the microarray game

The idea underlying the new version of the microarray game is to allow the
matrix at the core of the game to contain not only zeroes and ones. In other
words, we do not classify the genes only in two big categories, normally and
abnormally expressed, but we take also into account “how much” the genes
are abnormally expressed, by giving them a weight gradually increasing
depending on how much the gene is far from the normality interval. Of
course, this can be done in several ways. A natural one is to consider,
for each gene i, the normality interval, let us call it Ni = [mi,Mi](where
mi and Mi are respectively the minimum and maximum value of genes in
the expression of the genes in the reference group), to evaluate the standard
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deviation si relative to the data of the gene, to set Nk
i = [mi−ksi,Mi +ksi],

k = 1, . . . , n, and to assign the value k to the gene falling in the set Nk
i \N

k−1
i

(n if it falls outside all these sets). In this way, we can rank the genes
according to another type of index, called in the literature weighted index.

Thus, suppose we are given a n × m matrix M such that mij ≥ 0 for
all i, j. Observe that when M represents a classical microarray game, i.e.
mij ∈ {0, 1}, due to the equal splitting property the Shapley index of the
player i fulfills the formula

σi(v) =
1

m

m
∑

j=1

mij
∑n

i=1mij
.

It seems to be very natural then, to use exactly the same formula also when
the coefficient mij is not only valued in {0, 1}. It turns out that the index
so obtained is already known on the literature, since the resulting index is
the so called weighted (Shapley) index. We address the interested reader to
the survey article [Kalai and Samet (1987)], for more about these indices.

Our first attempts of processing data showed a kind of stability with
respect to the ranking of the genes, even though, as expected, taking into
account more intervals resulted in a better differentiation of the genes. Thus,
we decided to avoid binding the number of intervals, in order to have a more
fragmented ranking between the genes.
The (extended) microarray matrix well serves also to build a weighted ma-
jority game. Quite naturally, the weight of the player i in the game j is
given by the coefficient mij .
I want to add one remark. Even if the various indices give the same ranking
in weighted games (this is well known), this is no longer true in microarray
games, as simple examples show. Thus in the microarray game also the
ranking between genes, and not only the ratio of the power of the players is
relevant. Nevertheless, I notice that again a strong stability is shown in the
ranking of the genes, as far as we use different indices.

To conclude, I perform some tests with different data sets, i.e. Stroma
Rich and Stroma Poor Neuroblastic tumours, Ductal and Lobular breast
tumour, two different types of Colon tumour.

5.2 Data analysis

5.2.1 Data from early onset colon rectal cancer

Gene expression analysis was performed by using Human Genome U133A-
Plus 2.0 GeneChip arrays (Affymetrix, Inc., Calif). This data set contains 10
healthy samples and 12 derived from tumour tissues. In the following table
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we can see the ranking of the first 50 genes labelled with the Shapley value
(SY) by using the weighted indices and Banzhaf power index (WMGBa)
and Shapley power index (WMGSh) of the same 50 genes after they have
played a weighted majority game. The weights in the game are the values
of n that we have given to the genes in the cooperative game played with
the weighted indices, the share q is 50% + 1.
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SY Power index WMGBa Power index WMGSh Power index SY Power index WMGBa Power index WMGSh Power index

1 FOSB 0,013406 FOSB 0,43783 FOSB 0,25665 30 TAGLN 0,00068224 JUN 0,026731 RHOB 0,0095588

2 CYR61 0,010749 CYR61 0,4308 CYR61 0,164 31 MGC52498 0,00066903 AI492388 0,0266 TCEAL7 0,0090184

3 FOS 0,0040232 FXYD6 0,14946 FOS 0,046882 32 FABP4 0,00066456 TUBA1A 0,026464 AI492388 0,0087509

4 SFRP2 0,0030742 FOS 0,12135 FXYD6 0,046606 33 PLN 0,00066026 TUBB6 0,02621 MLLT11 0,0085647

5 VIP 0,0028325 VIP 0,11096 VIP 0,039589 34 KRT24 0,00065687 AHNAK2 0,025788 TUBA1A 0,0085303

6 FXYD6 0,0027964 SFRP2 0,062859 SFRP2 0,022553 35 MLLT11 0,00065618 TCEAL7 0,025705 MGP 0,0082503

7 ADAMTS1 0,0013196 DMN 0,061413 DMN 0,018164 36 TPM2 0,0006431 MLLT11 0,025094 TUBB6 0,008098

8 EGR1 0,0012059 DES 0,045702 S59049 0,015231 37 ATF3 0,00062799 HSPB6 0,024802 HSPB6 0,0078001

9 S59049 0,0010926 S59049 0,043233 EGR1 0,014095 38 GAL 0,00062255 MGP 0,023548 AHNAK2 0,0076697

10 DMN 0,0010618 CNN1 0,04316 DES 0,013667 39 PCP4 0,00061682 PDLIM7 0,022843 NR4A2 0,0075324

11 CTGF 0,0010598 MYL9 0,041688 ADAMTS1 0,013292 40 TCEAL7 0,00061188 NR4A2 0,021293 CCDC3 0,0071738

12 PRPH 0,0010598 RBPMS2 0,040835 RERGL 0,01297 41 AA889653 0,00060942 ADIPOQ 0,019666 PDLIM7 0,0070993

13 RERGL 0,00099813 AI969945 0,040284 MGC52498 0,01287 42 MAB21L2 0,00058727 CCDC3 0,019588 ADIPOQ 0,0070134

14 MGP 0,00094337 EGR1 0,039211 CNN1 0,012751 43 W72348 0,00058676 GAL 0,01923 GAL 0,0068292

15 DUSP1 0,0009388 ADAMTS1 0,037699 RBPMS2 0,01273 44 PDLIM7 0,00058529 FILIP1L 0,018355 FILIP1L 0,0061772

16 ADIPOQ 0,00091756 TPM2 0,036275 MYL9 0,012595 45 HSPB6 0,00058023 ATF3 0,017132 ATF3 0,0059581

17 JUN 0,00088653 PCP4 0,035583 AI969945 0,012539 46 TUBA1A 0,00057738 KRT24 0,015136 KRT24 0,0056429

18 hCG_1776018 0,00084162 AA889653 0,035282 CTGF 0,012041 47 AHNAK2 0,0005708 FABP4 0,01425 FABP4 0,0050061

19 AI969945 0,00083569 CTGF 0,035238 PRPH 0,011947 48 FILIP1L 0,00056639 BE044614 0,011158 BE044614 0,0039619

20 AI492388 0,00082685 MGC52498 0,034634 hCG_1776018 0,011142 49 TUBB6 0,00056406 W72348 0,0078261 W72348 0,0030981

21 SCG2 0,00082385 RERGL 0,034025 TPM2 0,010931 50 BE044614 0,00055078 BC038379 0,0074452 BC038379 0,002648

22 DES 0,00080315 MAB21L2 0,033892 SCG2 0,010925

23 RBPMS2 0,00079997 PRPH 0,033589 DUSP1 0,010648

24 MYL9 0,00078826 TAGLN 0,032999 AA889653 0,010379

25 NR4A2 0,00076649 PLN 0,03249 PCP4 0,010292

26 CNN1 0,00075588 hCG_1776018 0,030335 PLN 0,010142

27 RHOB 0,00074379 SCG2 0,029826 TAGLN 0,010129

28 BC038379 0,00070971 RHOB 0,028782 JUN 0,0099649

29 CCDC3 0,00070223 DUSP1 0,028085 MAB21L2 0,0098938

Figure 5.1: Early Onset Colon rectal Cancer. I take the first 50 genes
classified by Shapley value in weighted indices. The Banzhaf, Shapley values
in the weighted majority game are displayed.

Remark 5.2.1 Seven genes, CYR61, UCHL1, FOS, FOSB, EGR1, VIP,
KRT24, all present in our rankings function in a multitude of biological pro-
cesses ranging from transcription , angiogenesis, adhesion and inflammatory
regulation to protein catabolism in various cellular compartments, from ex-
tracellular to the nucleo. The over expression of these was already identified
as a potentially prediction of early onset colorectal cancer([Yi Hong et al.(2007)]).
These genes are all present in our rankings and show a certain stability.
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FOSB 0,43783 AI492388 0,0266

CYR61 0,4308 TUBA1A 0,026464

FXYD6 0,14946 TUBB6 0,02621

FOS 0,12135 AHNAK2 0,025788

VIP 0,11096 TCEAL7 0,025705

SFRP2 0,062859 MLLT11 0,025094

DMN 0,061413 HSPB6 0,024802

DES 0,045702 MGP 0,023548

S59049 0,043233 PDLIM7 0,022843

CNN1 0,04316 NR4A2 0,021293

MYL9 0,041688 ADIPOQ 0,019666

RBPMS2 0,040835 CCDC3 0,019588

AI969945 0,040284 GAL 0,01923

EGR1 0,039211 FILIP1L 0,018355

ADAMTS1 0,037699 ATF3 0,017132

TPM2 0,036275 KRT24 0,015136

PCP4 0,035583 FABP4 0,01425

AA889653 0,035282 BE044614 0,011158

CTGF 0,035238 W72348 0,007826

MGC52498 0,034634 BC038379 0,007445

RERGL 0,034025

MAB21L2 0,033892

PRPH 0,033589

TAGLN 0,032999

PLN 0,03249

hCG_1776018 0,030335

SCG2 0,029826

RHOB 0,028782

DUSP1 0,028085

JUN 0,026731

Figure 5.2: Early Onset Colon rectal Cancer. I take the first 50 genes
classified by Shapley value using the weighted indices, and the Banzhaf
value in the weighted majority game is displayed.
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Figure 5.3: Early Onset Colon rectal Cancer. Comparison of the previous
50 genes classified by the Shapley value on weighted indices now classified
in the weighted majority game. Genes are labelled on the x-axis; on y-axis
we have their Banzhaf power index.
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FOSB 0,25665 TCEAL7 0,009018

CYR61 0,164 AI492388 0,008751

FOS 0,046882 MLLT11 0,008565

FXYD6 0,046606 TUBA1A 0,00853

VIP 0,039589 MGP 0,00825

SFRP2 0,022553 TUBB6 0,008098

DMN 0,018164 HSPB6 0,0078

S59049 0,015231 AHNAK2 0,00767

EGR1 0,014095 NR4A2 0,007532

DES 0,013667 CCDC3 0,007174

ADAMTS1 0,013292 PDLIM7 0,007099

RERGL 0,01297 ADIPOQ 0,007013

MGC52498 0,01287 GAL 0,006829

CNN1 0,012751 FILIP1L 0,006177

RBPMS2 0,01273 ATF3 0,005958

MYL9 0,012595 KRT24 0,005643

AI969945 0,012539 FABP4 0,005006

CTGF 0,012041 BE044614 0,003962

PRPH 0,011947 W72348 0,003098

hCG_1776018 0,011142 BC038379 0,002648

TPM2 0,010931

SCG2 0,010925

DUSP1 0,010648

AA889653 0,010379

PCP4 0,010292

PLN 0,010142

TAGLN 0,010129

JUN 0,009965

MAB21L2 0,009894

RHOB 0,009559

Figure 5.4: Early Onset Colon rectal Cancer. Shapley value of the first 50
genes classified by the Shapley value on weighted indices now classified in
the weighted majority game.
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Figure 5.5: Early Onset Colon rectal Cancer. Comparison of the previous
50 genes classified by the Shapley value on weighted indices now classified
in the weighted majority game. Genes are labelled on the x-axis; on y-axis
we have their Shapley power index.
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5.2.2 Data from neuroblastic tumours

Gene expression analysis was performed by using Human Genome U133A
GeneChip arrays (Affymetrix, Inc., Calif). This data set contains 10 healthy
samples and 9 derived from tumour tissues of two different types of tumour:
neuroblastic tumours stroma poor (SP) and neuroblastic tumours stroma
rich (SR). In this case we have highlighted genes over or under expressed in
a form of cancer compared to the other one. The following tables contain the
ranking of the first 50 genes labelled with the Shapley value (SY) by using
the weighted indices. The first one contains the ranking obtained analyzing
data related to the tumour SR compared with SP used to identify the range
of normality (in the table marked with SR / SP), the second one the ranking
obtained analyzing data related to the tumour SP compared with SR used
to identify the range of normality (in the table marked with SP / SR). As in
the previous section, in the tables we can see also the Banzhaf power index
(WMGBa) and Shapley power index (WMGSh) of the same 50 genes after
they have played a weighted majority game. The weights in the game are
the values of n that we have given to the genes in the cooperative game
played with the weighted indices, the share q is 50% + 1.
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SY Power index WMGBa Power index WMGSh Power index SY Power index WMGBa Power index WMGSh Power index

1 ITGB8 0,0021972 ITGB8 0,18111 ITGB8 0,037546 30 NBLA00301 0,0010748 UTS2 0,081471 ANGPTL7 0,017831

2 PDZRN4 0,0021116 PDZRN4 0,16469 PDZRN4 0,03405 31 C1orf76 0,00098634 C1orf76 0,080401 DAG1 0,017829

3 PMP2 0,0018277 CALCA 0,14958 PMP2 0,030634 32 TFPI2 0,00098564 ADAM28 0,079995 ISL1 0,017514

4 NDP 0,0018028 PMP2 0,14606 TCL1A 0,03033 33 GFAP 0,00097911 STAP1 0,079337 TFPI2 0,017371

5 CALCA 0,0017725 NDP 0,14591 NDP 0,030329 34 ITPR3 0,00096842 CYP4B1 0,077544 MAST1 0,017027

6 SERPINA3 0,0017664 SERPINA3 0,13877 CALCA 0,030234 35 PLEKHB1 0,00096679 PRKD1 0,077529 UTS2 0,016355

7 KLF5 0,0016495 TCL1A 0,12628 SERPINA3 0,028513 36 PRKD1 0,00093585 MAST1 0,077351 PRKD1 0,016305

8 MGC39900 0,0015321 KLF5 0,12586 MGC39900 0,027313 37 AASS 0,00093032 PLEKHB1 0,076944 ITPR3 0,015985

9 TMSL8 0,0015321 MGC39900 0,12486 TMSL8 0,027313 38 MPZ 0,00092516 ITPR3 0,07673 VGLL3 0,015884

10 ST6GALNAC2 0,0015132 TMSL8 0,12486 KLF5 0,026083 39 MAST1 0,00092437 ISL1 0,076487 AASS 0,015765

11 TNNC1 0,001484 ST6GALNAC2 0,11963 CDH1 0,02521 40 VGLL3 0,0009126 VGLL3 0,07569 PLEKHB1 0,015705

12 CAB39L 0,0014384 CDH1 0,11656 ST6GALNAC2 0,024818 41 ADAM28 0,00090855 AASS 0,074856 CYP4B1 0,01558

13 TCL1A 0,0013945 CAB39L 0,11536 CAB39L 0,024136 42 OLFM4 0,00090614 GFAP 0,073608 GFAP 0,015209

14 CDH1 0,0013833 TNNC1 0,11472 TNNC1 0,023777 43 GAS7 0,00089997 MPZ 0,072223 MPZ 0,014787

15 ALLC 0,0013368 ADAMTS8 0,10098 NBLA00301 0,02067 44 STAP1 0,00089545 MGC87042 0,070209 MGC87042 0,014595

16 ADAMTS8 0,0013115 ALLC 0,098107 ADAMTS8 0,020564 45 CAPN6 0,00089392 GAS7 0,069895 HNT 0,014275

17 CTDSPL 0,0012303 MBP 0,095578 TSPAN8 0,020059 46 ISL1 0,00089056 HNT 0,06977 GAS7 0,014243

18 TSPAN8 0,001195 CTDSPL 0,095135 MBP 0,020053 47 HNT 0,00088862 CAPN6 0,06863 CAPN6 0,014133

19 MBP 0,0011811 TSPAN8 0,094831 ALLC 0,019592 48 MGC87042 0,00088692 OLFM4 0,068557 OLFM4 0,013892

20 NGFR 0,0011669 NBLA00301 0,090417 STAP1 0,01959 49 COBL 0,00086458 COBL 0,067226 COBL 0,013666

21 SEMA3B 0,0011512 NGFR 0,090173 CTDSPL 0,019462 50 FOXD1 0,00084731 FOXD1 0,067212 FOXD1 0,012596

22 SLC22A3 0,0011482 SEMA3B 0,08814 CIITA 0,018531

23 DAG1 0,0011257 LGI1 0,088138 SLC22A3 0,018285

24 ANGPTL7 0,0011224 SLC22A3 0,088011 NGFR 0,018267

25 LGI1 0,0011058 DAG1 0,087284 LGI1 0,018198

26 SDC4 0,0010914 SDC4 0,087148 SEMA3B 0,018169

27 CIITA 0,001085 ANGPTL7 0,086316 SDC4 0,018144

28 UTS2 0,00108 CIITA 0,085446 C1orf76 0,018138

29 CYP4B1 0,0010753 TFPI2 0,082401 ADAM28 0,01804

Figure 5.6: Neuroblastic tumour: SR/SP. I take the first 50 genes classified
by Shapley value in weighted indices. The Banzhaf, Shapley values in the
weighted majority game are displayed.

Remark 5.2.2 Eight genes, ANGPTL7, PMP2, TSPAN8, CENPF, EYA1,PBK,
TOP2A, TFAP2B are present in our rankings and five of them (CENPF,
EYA1,PBK, TOP2A, TFAP2B) encode for nuclear proteins. The over ex-
pression of these genes was already identified in([Albino et al. (2008)]). These
genes show a certain stability in our rankings.
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TSPAN8 0,094831 HNT 0,06977

MBP 0,095578 MGC87042 0,070209

NGFR 0,090173 COBL 0,067226
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SLC22A3 0,088011

DAG1 0,087284

ANGPTL7 0,086316
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Figure 5.7: Neuroblastic tumour: SR/SP. Banzhaf value of the first 50
genes classified by the Shapley value on weighted indices now classified in
the weighted majority game.
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Figure 5.8: Neuroblastic tumour: SR/SP. Comparison of the previous 50
genes classified by the Shapley value on weighted indices now classified in
the weighted majority game. Genes are labelled on the x-axis; on y-axis we
have their Banzhaf power index.
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Figure 5.9: Neuroblastic tumour: SR/SP. Shapley value of the first 50 genes
classified by the Shapley value on weighted indices now classified in the
weighted majority game.
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Figure 5.10: Neuroblastic tumour: SR/SP. Comparison of the previous 50
genes classified by the Shapley value on weighted indices now classified in
the weighted majority game. Genes are labelled on the x-axis; on y-axis we
have their Shapley power index.
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SY Power index WMGBa Power index WMGSh Power index SY Power index WMGBa Power index WMGSh Power index

1 UBE2C 0,0029603 UBE2C 0,37953 UBE2C 0,076685 29 MGC39900 0,00069808 CENPA 0,085599 TMSL8 0,017562

2 VASH2 0,0011515 VASH2 0,14108 VASH2 0,029082 30 TMSL8 0,00069808 TFAP2B 0,08508 TFAP2B 0,017384

3 CENPF 0,001052 CENPF 0,1264 CENPF 0,026105 31 CDC20 0,00069502 KLHL23 0,083241 KLHL23 0,01707

4 MCM10 0,0010153 CXXC4 0,12143 CXXC4 0,024891 32 MLF1IP 0,00069459 GDAP1L1 0,082828 GDAP1L1 0,017033

5 CXXC4 0,00097964 TGFBR2 0,11617 TGFBR2 0,023944 33 MCM4 0,00069399 MCM4 0,081924 MCM4 0,01691

6 BIRC5 0,0009709 ZNF821 0,11381 BIRC5 0,023378 34 TUSC4 0,00068942 CDC20 0,081875 CDC20 0,016876

7 FOXM1 0,00097027 BIRC5 0,11283 ZNF821 0,023179 35 FAM64A 0,00068869 LPAR2 0,081498 HJURP 0,016797

8 ZNF821 0,00090364 FOXM1 0,11187 FOXM1 0,023158 36 GDAP1L1 0,00068173 FAM64A 0,081348 MLF1IP 0,016775

9 NCAPG 0,00087407 MCM10 0,10977 MCM10 0,022801 37 ARID3B 0,00066655 MLF1IP 0,081238 FAM64A 0,016695

10 TGFBR2 0,00087197 DCN 0,10288 NCAPG 0,021348 38 GRM8 0,00066268 HJURP 0,080887 LPAR2 0,016684

11 TPX2 0,00086789 NCAPG 0,1026 DCN 0,021125 39 TFAP2B 0,00066144 ICA1 0,080251 KIF22 0,016577

12 MKI67 0,00083887 TPX2 0,099536 TPX2 0,020627 40 GTSE1 0,00065314 KIF22 0,079968 ICA1 0,01653

13 ESPL1 0,00083773 ESPL1 0,09937 ESPL1 0,020428 41 MMP12 0,00065187 ARID3B 0,079597 ARID3B 0,016269

14 KIF20A 0,00082464 IGF2BP3 0,097603 KIF20A 0,020081 42 ICA1 0,00064484 FLJ22184 0,078721 FLJ22184 0,016175

15 EIF4EBP1 0,00082064 KIF20A 0,097162 IGF2BP3 0,020061 43 GINS2 0,00063776 GRM8 0,078091 GRM8 0,016036

16 IGF2BP3 0,00080548 EIF4EBP1 0,094094 EIF4EBP1 0,01972 44 LPAR2 0,00063766 GTSE1 0,077673 GTSE1 0,01602

17 DTL 0,00079153 FEV 0,09358 MKI67 0,019426 45 FLJ22184 0,00063747 GINS2 0,077582 MMP12 0,015909

18 TTK 0,00077759 MKI67 0,093233 FEV 0,019218 46 PXMP2 0,00063551 MMP12 0,077217 GINS2 0,015904

19 PBK 0,00077254 LOC157627 0,092917 DTL 0,019036 47 TRAP1 0,00063517 ARC 0,077127 TRAP1 0,015742

20 FEV 0,00076269 EYA1 0,092815 EYA1 0,01902 48 KIF14 0,00063496 TRAP1 0,075046 ARC 0,015642

21 PHOX2A 0,00075755 DTL 0,092507 LOC157627 0,018996 49 ARC 0,00063075 KIF14 0,074853 KIF14 0,015321

22 DCN 0,0007492 TTK 0,091287 TTK 0,01888 50 PXMP2 0,00063551 PXMP2 0,074801 PXMP2 0,015263

23 TOP2A 0,00073944 PHOX2A 0,089891 PHOX2A 0,01842

24 LOC157627 0,00073602 PBK 0,089613 PBK 0,018411

25 EYA1 0,00073289 TOP2A 0,087734 TOP2A 0,018001

26 CENPA 0,00073287 TUSC4 0,086041 CENPA 0,017678

27 HJURP 0,00072763 MGC39900 0,085727 TUSC4 0,017564

28 KIF22 0,0007002 TMSL8 0,085727 MGC39900 0,017562

Figure 5.11: Neuroblastic tumour: SP/SR. I take the first 50 genes classified
by Shapley value in weighted indices. The Banzhaf, Shapley values in the
weighted majority game are displayed.



69

UBE2C 0,37953 CDC20 0,081875

VASH2 0,14108 MLF1IP 0,081238

CENPF 0,1264 MCM4 0,081924

MCM10 0,10977 TUSC4 0,086041

CXXC4 0,12143 FAM64A 0,081348

BIRC5 0,11283 GDAP1L1 0,082828

FOXM1 0,11187 ARID3B 0,079597

ZNF821 0,11381 GRM8 0,078091

NCAPG 0,1026 TFAP2B 0,08508

TGFBR2 0,11617 GTSE1 0,077673

TPX2 0,099536 MMP12 0,077217

MKI67 0,093233 ICA1 0,080251

ESPL1 0,09937 GINS2 0,077582

KIF20A 0,097162 LPAR2 0,081498

EIF4EBP1 0,094094 FLJ22184 0,078721

IGF2BP3 0,097603 PXMP2 0,074801

DTL 0,092507 TRAP1 0,075046

TTK 0,091287 KIF14 0,074853

PBK 0,089613 ARC 0,077127

FEV 0,09358 KLHL23 0,083241

PHOX2A 0,089891

DCN 0,10288

TOP2A 0,087734

LOC157627 0,092917

EYA1 0,092815

CENPA 0,085599

HJURP 0,080887

KIF22 0,079968

MGC39900 0,085727

TMSL8 0,085727

Figure 5.12: Neuroblastic tumour: SP/SR.Banzhaf value of the first 50
genes classified by the Shapley value on weighted indices now classified in
the weighted majority game.
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Figure 5.13: Neuroblastic tumour: SP/SR. Comparison of the previous 50
genes classified by the Shapley value on weighted indices now classified in
the weighted majority game. Genes are labelled on the x-axis; on y-axis we
have their Banzhaf power index.
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Figure 5.14: Neuroblastic tumour: SP/SR. Shapley value of the first 50
genes classified by the Shapley value on weighted indices now classified in
the weighted majority game.
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Figure 5.15: Neuroblastic tumour: SP/SR. Comparison of the previous 50
genes classified by the Shapley value on weighted indices now classified in
the weighted majority game. Genes are labelled on the x-axis; on y-axis we
have their Shapley power index.



73

5.2.3 Data from lobular and ductal invasive breast carcino-

mas

Gene expression analysis was performed by using Human Genome U133-
Plus 2.0 GeneChip arrays (Affymetrix, Inc., Calif). This data set contains
10 healthy samples of ductal and lobular cells, 5 samples of ductal cells and
5 samples of lobular cells derived from tumour tissues. In the following table
we can see the ranking of the first 50 genes labelled with the Shapley value
(SY) by using the weighted indices and Banzhaf power index (WMGBa)
and Shapley power index (WMGSh) of the same 50 genes after they have
played a weighted majority game. The weights in the game are the values
of n that we have given to the genes in the cooperative game played with
the weighted indices, the share q is 50% + 1.



74

SY Power index WMGBa Power index WMGSh Power index SY Power index WMGBa Power index WMGSh Power index

1 KCNU1 0,0017369 CYP7B1 0,14203 CYP7B1 0,060945 30 MPV17 0,00063948 C5orf29 0,045413 CD207 0,014674

2 TRAT1 0,001725 TRAT1 0,12173 TRAT1 0,044342 31 TMEFF1 0,00062415 SPA17 0,045072 FLNA 0,014621

3 CYP7B1 0,0016046 KCNU1 0,12051 CRTAM 0,042187 32 HIST1H2AG 0,00061281 MKKS 0,045063 KIF4A 0,014596

4 hCG_2032978 0,0013923 DACH2 0,10382 KCNU1 0,040051 33 FLJ35816 0,00061196 NRK 0,044512 KIF4B 0,014596

5 ZNF675 0,0012282 CRISP3 0,095383 DACH2 0,033444 34 UGT2B4 0,00060918 MMP1 0,044442 SPA17 0,014209

6 DACH2 0,001219 hCG_2032978 0,092778 CRISP3 0,032362 35 APOBEC3A 0,00060457 MPV17 0,044366 MPV17 0,014103

7 CRTAM 0,0012087 FMR1NB 0,090091 FMR1NB 0,030744 36 HIST1H2AM 0,00059883 SPESP1 0,042324 LOC285033 0,014065

8 ZFY 0,001087 CRTAM 0,090081 ZFY 0,029403 37 MMP1 0,00058417 KRT17 0,041871 MMP1 0,013931

9 GPR128 0,0010328 ZFY 0,087583 hCG_2032978 0,026666 38 FLNA 0,00058355 LSM11 0,041408 SPESP1 0,013926

10 CRISP3 0,0010273 ZNF675 0,082429 TEX14 0,026406 39 KIF4A 0,00058009 DMN 0,041028 DMN 0,013823

11 PDE6C 0,00096831 DEPDC7 0,079213 DEPDC7 0,02594 40 KIF4B 0,00058009 RIT2 0,040285 LSM11 0,013816

12 TRAM1L1 0,00093223 TEX14 0,077749 ZNF675 0,025458 41 MKKS 0,00057925 LOC285033 0,039512 CST4 0,0125

13 DEPDC7 0,00092639 TRAM1L1 0,077708 TRAM1L1 0,025077 42 GABRB1 0,00057586 LOC651721 0,039163 TMEFF1 0,012229

14 ZNF750 0,00088785 KRT14 0,066076 KRT14 0,024191 43 SPESP1 0,00056432 CST4 0,038783 LOC651721 0,012201

15 KRT14 0,00084938 HIST1H2AG 0,065322 HIST1H2AG 0,022628 44 KRT17 0,000553 TMEFF1 0,038338 RIT2 0,011842

16 TEX14 0,00081284 GPR128 0,064358 FLJ40473 0,020597 45 HABP2 0,00055263 APOBEC3A 0,037465 HIST1H2AM 0,011397

17 ZNF28 0,00080345 PDE6C 0,0578 PDE6C 0,019807 46 STYX 0,00055009 C20orf103 0,035827 C20orf103 0,011354

18 CD207 0,00080195 FLJ40473 0,054813 GPR128 0,019005 47 NRK 0,00054823 HIST1H2AM 0,035684 GABRB1 0,011247

19 FMR1NB 0,00079665 HMMR 0,054299 ZNF750 0,01727 48 C20orf103 0,00054602 STYX 0,034744 STYX 0,011105

20 FLJ40473 0,00077918 EEF1G 0,053303 HMMR 0,017262 49 DMN 0,0005454 GABRB1 0,033254 APOBEC3A 0,011001

21 HMMR 0,0007486 LOC729998 0,053303 EEF1G 0,016994 50 LOC285033 0,00054043 HABP2 0,032788 HABP2 0,01087

22 EEF1G 0,00069973 ZNF750 0,051903 LOC729998 0,016994

23 LOC729998 0,00069973 FLJ35816 0,051054 FLJ35816 0,016485

24 LSM11 0,00067243 UGT2B4 0,050269 C5orf29 0,016303

25 LOC651721 0,00066891 ZNF28 0,050252 UGT2B4 0,016223

26 SPA17 0,00066873 CD207 0,049877 NRK 0,01572

27 CST4 0,000667 KIF4A 0,045947 MKKS 0,0153

28 C5orf29 0,00066365 KIF4B 0,045947 KRT17 0,015065

29 RIT2 0,0006495 FLNA 0,045426 ZNF28 0,015025

Figure 5.16: Lobular. I take the first 50 genes classified by Shapley value
in weighted indices. The Banzhaf, Shapley values in the weighted majority
game are displayed.

Remark 5.2.3 In our ranking of genes, we identified an important gene
HMMR which is already known to be associated with higher risk of breast
cancer in humans([ Pujana et al.(2007)]). In this paper the authors, start-
ing with four known genes encoding tumour suppressors of breast cancer,
combined gene expression profiling with functional genomic and proteomic
(or ’omic’) data from various species to generate a network containing 118
genes linked by 866 potential functional associations. This network shows
higher connectivity than expected by chance, suggesting that its compo-
nents function in biologically related pathways. One of the components of
the network is HMMR, encoding a centrosome subunit. Two case-control
studies of incident breast cancer indicate that the HMMR locus is associated
with higher risk of breast cancer in humans.
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Figure 5.17: Lobular. Banzhaf value of the first 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game.
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Figure 5.18: Lobular. Comparison of the previous 50 genes classified by the
Shapley value on weightedindices now classified in the weighted majority
game. Genes are labelled on the x-axis; on y-axis we have their Banzhaf
power index.



77

KCNU1 0,040051 MPV17 0,014103

TRAT1 0,044342 TMEFF1 0,012229

CYP7B1 0,060945 HIST1H2AG 0,022628

hCG_2032978 0,026666 FLJ35816 0,016485

ZNF675 0,025458 UGT2B4 0,016223

DACH2 0,033444 APOBEC3A 0,011001

CRTAM 0,042187 HIST1H2AM 0,011397

ZFY 0,029403 MMP1 0,013931

GPR128 0,019005 FLNA 0,014621

CRISP3 0,032362 KIF4A 0,014596

PDE6C 0,019807 KIF4B 0,014596

TRAM1L1 0,025077 MKKS 0,0153

DEPDC7 0,02594 GABRB1 0,011247

ZNF750 0,01727 SPESP1 0,013926

KRT14 0,024191 KRT17 0,015065

TEX14 0,026406 HABP2 0,01087

ZNF28 0,015025 STYX 0,011105

CD207 0,014674 NRK 0,01572

FMR1NB 0,030744 C20orf103 0,011354

FLJ40473 0,020597 DMN 0,013823

HMMR 0,017262 LOC285033 0,014065

EEF1G 0,016994

LOC729998 0,016994

LSM11 0,013816

LOC651721 0,012201

SPA17 0,014209

CST4 0,0125

C5orf29 0,016303

RIT2 0,011842

Figure 5.19: Lobular. Shapley value of the first 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game.
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Figure 5.20: Lobular. Comparison of the previous 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game. Genes are labelled on the x-axis; on y-axis we have their Shapley
power index.
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SY Power index WMGBa Power index WMGSh Power index SY Poer index WMGBa Power index WMGSh Power index

1 CRISP3 0,001578 EPYC 0,1289 EPYC 0,053485 30 GAGE6 0,00078691 SPANXA2 0,047292 MMP1 0,015442

2 FLJ30672 0,0015734 FLJ30672 0,12786 FLJ30672 0,053144 31 C20orf197 0,00076646 LOC285389 0,04531 HIST1H3D 0,014797

3 EPYC 0,001495 CRISP3 0,11985 CRISP3 0,052176 32 AHRR 0,00075993 AHRR 0,044629 RIMS2 0,01399

4 SPANXB1 0,0013188 IKZF3 0,11154 IKZF3 0,052036 33 SOX2OT 0,00075932 GAGE4 0,043721 SPANXA1 0,013976

5 SPANXB2 0,0013188 TRAT1 0,086493 TRAT1 0,041803 34 SCGB2A2 0,00075215 GAGE5 0,043721 SPANXA2 0,013976

6 GPM6A 0,0012047 CACNA2D3 0,073796 CACNA2D3 0,032335 35 C14orf25 0,00074636 ARHGAP6 0,043529 SPANXC 0,01262

7 FLJ33534 0,0011462 SPANXB1 0,071642 TMEFF1 0,027349 36 GAGE1 0,0007455 SPANXC 0,042698 LINGO1 0,012331

8 PCSK1 0,0011059 SPANXB2 0,071642 KRT5 0,022428 37 GAGE12J 0,0007455 GAGE12G 0,041428 GAGE4 0,012147

9 MMP1 0,0010354 GPM6A 0,065237 MCF2L2 0,021927 38 MAGEA6 0,0007455 GAGE12I 0,041428 GAGE5 0,012147

10 TMEFF1 0,00097972 TMEFF1 0,064083 PABPC5 0,021927 39 LOC728342 0,00073615 GAGE6 0,041428 LOC643300 0,011678

11 KRT5 0,00096731 KRT5 0,063182 CST4 0,021644 40 LOC643300 0,00072739 HIST1H3D 0,040284 LOC644745 0,011678

12 RIMS2 0,00096376 FLJ33534 0,060922 C20orf197 0,021318 41 LOC644745 0,00072739 LINGO1 0,039685 GAGE12G 0,011503

13 CACNA2D3 0,00094862 PCSK1 0,059158 CA6 0,02124 42 LINGO1 0,00072497 GAGE1 0,039154 GAGE12I 0,011503

14 KRT14 0,00090252 KRT14 0,057898 SPANXB1 0,021077 43 LOC285389 0,00072131 GAGE12J 0,039154 GAGE6 0,011503

15 SPANXA1 0,00089349 ABCC4 0,056175 SPANXB2 0,021077 44 ANXA3 0,00070911 MAGEA6 0,039154 LOC728342 0,011303

16 SPANXA2 0,00089349 MMP1 0,055522 SOX2OT 0,020711 45 TRAT1 0,00069184 LOC728342 0,039012 LOC153328 0,011257

17 CST4 0,00088635 KRT17 0,054617 ABCC4 0,020161 46 LOC153328 0,00068821 LOC643300 0,037933 GAGE1 0,010862

18 CA6 0,00085997 CST4 0,053303 KRT14 0,020144 47 HIST1H3D 0,00067501 LOC644745 0,037933 GAGE12J 0,010862

19 ABCC4 0,00083706 CENPA 0,052876 LOC285389 0,020051 48 ARHGAP6 0,0006649 LOC153328 0,035996 MAGEA6 0,010862

20 IKZF3 0,00083569 CA6 0,052257 KRT17 0,019666 49 GAGE2A 0,00066266 GAGE2A 0,034655 GAGE2A 0,0095942

21 GAGE4 0,00082833 SCGB2A2 0,051237 SCGB2A2 0,018578 50 GAGE7 0,00066266 GAGE7 0,034655 GAGE7 0,0095942

22 GAGE5 0,00082833 RIMS2 0,049883 GPM6A 0,018406

23 KRT17 0,00082218 MCF2L2 0,049806 CENPA 0,018336

24 CENPA 0,00081033 PABPC5 0,049806 C14orf25 0,018236

25 MCF2L2 0,00080899 SOX2OT 0,049077 ARHGAP6 0,018136

26 PABPC5 0,00080899 C20orf197 0,047632 FLJ33534 0,01764

27 SPANXC 0,00080842 C14orf25 0,047353 AHRR 0,017345

28 GAGE12G 0,00078691 ANXA3 0,047335 PCSK1 0,017213

29 GAGE12I 0,00078691 SPANXA1 0,047292 ANXA3 0,01679

Figure 5.21: Ductal. I take the first 50 genes classified by Shapley value
in weighted indices. The Banzhaf, Shapley values in the weighted majority
game are displayed.
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Figure 5.22: Ductal. Banzhaf value of the first 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game.
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Figure 5.23: Ductal. Comparison of the previous 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game. Genes are labelled on the x-axis; on y-axis we have their Banzhaf
power index.
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CRISP3 0,052176 GAGE6 0,011503

FLJ30672 0,053144 C20orf197 0,021318

EPYC 0,053485 AHRR 0,017345

SPANXB1 0,021077 SOX2OT 0,020711

SPANXB2 0,021077 SCGB2A2 0,018578

GPM6A 0,018406 C14orf25 0,018236

FLJ33534 0,01764 GAGE1 0,010862

PCSK1 0,017213 GAGE12J 0,010862

MMP1 0,015442 MAGEA6 0,010862

TMEFF1 0,027349 LOC728342 0,011303

KRT5 0,022428 LOC643300 0,011678

RIMS2 0,01399 LOC644745 0,011678

CACNA2D3 0,032335 LINGO1 0,012331

KRT14 0,020144 LOC285389 0,020051

SPANXA1 0,013976 ANXA3 0,01679

SPANXA2 0,013976 TRAT1 0,041803

CST4 0,021644 LOC153328 0,011257

CA6 0,02124 HIST1H3D 0,014797

ABCC4 0,020161 ARHGAP6 0,018136

IKZF3 0,052036 GAGE2A 0,0095942

GAGE4 0,012147 GAGE7 0,0095942

GAGE5 0,012147

KRT17 0,019666

CENPA 0,018336

MCF2L2 0,021927

PABPC5 0,021927

SPANXC 0,01262

GAGE12G 0,011503

GAGE12I 0,011503

Figure 5.24: Ductal. Shapley value of the first 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game.
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Figure 5.25: Ductal. Comparison of the previous 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game. Genes are labelled on the x-axis; on y-axis we have their Shapley
power index.
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5.2.4 Data from colon tumour

Gene expression analysis was performed by using Affymetrix oligonucleotide
(http://microarray.princeton.edu/oncology/affydata/index.html) microarrays
for a set of 40 tumour samples and a set of 22 normal samples. In the fol-
lowing table we can see the ranking of the first 50 genes labelled with the
Shapley value (SY) by using the weighted indices and Banzhaf power index
(WMGBa) and Shapley power index (WMGSh) of the same 50 genes after
they have played a weighted majority game. The weights in the game are
the values of n that we have given to the genes in the cooperative game
played with the weighted indices, the share q is 50% + 1.
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SY Power index WMGBa Power index WMGSh Power index SY Power index WMGBa Power index WMGSh

1 Hsa.8831 T49941 0,0098248 R36977 0,1544 R36977 0,058615 29 Hsa.1588 U09587 0,0029307 H40137 0,041392 R08021

2 Hsa.549 R36977 0,0096155 T51261 0,11963 T51261 0,046732 30 Hsa.1701 M86934 0,0028796 R41873 0,040628 X53586

3 Hsa.22762 H17434 0,0083611 H72234 0,0977 T49941 0,038656 31 Hsa.471 M29277 0,0028438 U09587 0,040576 H40269

4 Hsa.9972 T51261 0,0070922 H17434 0,091886 H17434 0,03489 32 Hsa.9218 T51858 0,0028349 R84411 0,040466 R10066

5 Hsa.7 H72234 0,0067444 M15841 0,087466 H72234 0,033965 33 Hsa.2157 R20554 0,0028175 Y00971 0,040255 R41873

6 Hsa.2196 M58050 0,0067087 T49941 0,084495 T41204 0,032903 34 Hsa.2959 K03124 0,0028066 T83368 0,03997 J05032

7 Hsa.9353 M15841 0,005824 M58050 0,081495 M15841 0,031709 35 Hsa.1209 T41204 0,0027826 T51858 0,039666 M83751

8 Hsa.1143 T49941 0,0049608 R16156 0,066671 M58050 0,029906 36 Hsa.23824 R41873 0,0027485 R54097 0,039199 Y00971

9 Hsa.6814 H08393 0,0047805 H65355 0,064892 T64885 0,026204 37 Hsa.31500 R62945 0,0027448 H40269 0,039148 M19045

10 Hsa.831 M22382 0,004575 M22382 0,064317 T58731 0,025426 38 Hsa.594 M83751 0,0027186 D00762 0,039094 D00762

11 Hsa.7652 R16156 0,0041367 T41204 0,064019 H65355 0,024696 39 Hsa.462 U09564 0,002674 U09564 0,037141 T51023

12 Hsa.42625 H65355 0,004034 T84049 0,059947 M15841 0,023511 40 Hsa.832 T51023 0,0026239 T65740 0,036635 R67999

13 Hsa.1047 R84411 0,00372 R05145 0,058056 T84049 0,023058 41 Hsa.60 D00762 0,002618 U28686 0,035313 T51858

14 Hsa.1410 R54097 0,0036787 T58731 0,058028 M58050 0,02302 42 Hsa.37553 H40269 0,0026011 T51023 0,035277 U28686

15 Hsa.3306 X12671 0,0035641 R43914 0,057617 R05145 0,02274 43 Hsa.3230 U28686 0,0025839 R20554 0,034599 U09564

16 Hsa.21562 R08021 0,0033905 R62945 0,05704 M22382 0,022082 44 Hsa.11240 T58731 0,0025839 T64885 0,034127 T65740

17 Hsa.10664 T83368 0,0033898 M15841 0,051913 R43914 0,021361 45 Hsa.36689 Z50753 0,0025717 R49416 0,03177 R20554

18 Hsa.3141 R05145 0,0033638 X12671 0,0519 R62945 0,020995 46 Hsa.5908 R67999 0,0025217 M29277 0,028788 R49416

19 Hsa.13628 T64885 0,0033302 T58731 0,051511 R43914 0,020332 47 Hsa.42186 H61410 0,0024757 M86934 0,02798 M29277

20 Hsa.2821 X53586 0,0033198 K03124 0,0491 K03124 0,018091 48 Hsa.2964 Y00971 0,0024685 M28373 0,022027 M86934

21 Hsa.4937 R43914 0,0032856 X53586 0,046683 R84411 0,01761 49 Hsa.5756 T65740 0,0024557 R54097 0,019352 M28373

22 Hsa.31630 R64115 0,0032422 M83751 0,044293 X12671 0,017532 50 Hsa.891 M19045 0,0024397 H40269 0,019257 M83751

23 Hsa.7395 R10066 0,0031524 R64115 0,043793 U28686 0,017491

24 Hsa.37541 H40137 0,0030939 M19045 0,042937 H40137 0,01675

25 Hsa.2280 R49416 0,0030479 R10066 0,0423 R54097 0,016599

26 Hsa.601 J05032 0,0030449 R08021 0,041969 T83368 0,016303

27 Hsa.1731 M28373 0,0030042 R67999 0,041715 U09587 0,01627

28 Hsa.6288 T84049 0,0029694 J05032 0,04153 R64115 0,016237

Figure 5.26: Colon. I take the first 50 genes classified by Shapley value in
weighted indices. The Banzhaf, Shapley values in the weighted majority
game are displayed.

Remark 5.2.4 Some of the genes selected were previously observed in as-
sociation with the colon cancer ([Fujarewicz K., Wiench M. (2003)]): the
vasoactive intestinal peptide (M36634: Human vasoactive intestinal pep-
tide (VIP)), has been suggested to promote the growth and proliferation of
tumour cells; the membrane cofactor protein (M58050; Human membrane
cofactor protein (MCP)) represents a possible mechanism of the ability of
the tumour to evade destruction by the immune system. H72234: DNA-
(APURINIC OR APYRIMIDINIC SITE) LYASE (HUMAN) plays an im-
portant role in DNA repair and in resistance of cancer cells to radiotherapy
([Moler E.J., Chow M.L, Mian I.S. (2000)]).
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T49941 0,084495 T51858 0,022027

R36977 0,1544 R20554 0,039666

H17434 0,091886 H65355 0,03177

T51261 0,11963 K03124 0,0491

H72234 0,0977 T41204 0,064019

M58050 0,081495 R41873 0,040628

M15841 0,087466 R62945 0,051913

M15841 0,0519 M83751 0,044293

H08393 0,057617 U09564 0,037141

M22382 0,064317 T51023 0,034599

R16156 0,066671 D00762 0,039094

H65355 0,064892 H40269 0,039148

R84411 0,040466 T58731 0,058028

R54097 0,039199 U28686 0,035277

X12671 0,051511 Z50753 0,034127

R08021 0,041969 R67999 0,041715

T83368 0,03997 H61410 0,035313

T64885 0,058056 Y00971 0,040255

X53586 0,028788 T65740 0,036635

R43914 0,046683 M19045 0,042937

R64115 0,05704

R10066 0,043793

H40137 0,0423

R49416 0,041392

J05032 0,02798

M28373 0,04153

T84049 0,019257

U09587 0,059947

M86934 0,040576

M29277 0,019352

Figure 5.27: Colon. Banzhaf value of the first 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game.



86

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 5.28: Colon. Comparison of the previous 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game. Genes are labelled on the x-axis; on y-axis we have their Banzhaf
power index.
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T49941 0,038656 M29277 0,0099332

R36977 0,058615 T51858 0,012449

H17434 0,03489 R20554 0,012

T51261 0,046732 K03124 0,018091

H72234 0,033965 T41204 0,032903

M58050 0,029906 R41873 0,014771

M15841 0,031709 R62945 0,020995

M15841 0,023058 M83751 0,0144

H08393 0,020332 U09564 0,012224

M22382 0,022082 T51023 0,012786

R16156 0,023511 D00762 0,012924

H65355 0,024696 H40269 0,015697

R84411 0,01761 T58731 0,025426

R54097 0,016599 U28686 0,01225

X12671 0,017532 R67999 0,012431

R08021 0,016227 T41204 0,012773

T83368 0,016303 H61410 0,017491

R05145 0,02274 Y00971 0,013992

T64885 0,026204 T65740 0,012046

X53586 0,015891 M19045 0,013446

R43914 0,021361

R64115 0,016237

R10066 0,015124

H40137 0,01675

R49416 0,011106

J05032 0,014685

M28373 0,0095128

T84049 0,02302

U09587 0,01627

M86934 0,0096472

Figure 5.29: Colon. Shapley value of the first 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game.
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Figure 5.30: Colon. Comparison of the previous 50 genes classified by the
Shapley value on weighted indices now classified in the weighted majority
game. Genes are labelled on the x-axis; on y-axis we have their Shapley
power index.
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